财务大数据与商业智能-财经大数据与商业智能应用

本文目录一览:

大数据 商业智能两者有什么关系

你好,这个很多的。商业智能不能等同于不是大数据。它是一套完整的解决方案,用来将企业中现有的数据进行有效的整合,快速准确的提供报表并提出决策依据,帮助企业做出明智的业务经营决策。

大数据的侧重点在于数据海量处理,主要是对非结构化的数据进行处理。大数据是传统数据库、数据仓库、BI概念外延的扩展,手段的扩充,不存在取代的关系,也并不是互斥的关系。考虑实用性的话,传统商业智能指基于传统数据仓库进行分析以辅助决,可以说BI工具会更适合一般企业,这是未来趋势。在选择方面,很多国内厂商比如FineBI会更贴近国内企业的情况,可以了解一下。

大数据和商业智能的关系是什么?

商业智能

商业智能BI(Businesslntelligence),是基于企业服务的一整套数据利用方案,在实际运作中主要负责打通企业各部门业务系统(ERP、OA)数据,并将这些不同来源的数据经过ETL处理后整合汇总到数据仓库中。

后续企业可以通过BI包含的数据可视化分析功能,将这些业务数据转化为可用的信息,方便企业不同人员进行数据查询、分析、挖掘等,为管理和业务人员提供数据和信息上的依据,辅助进行决策。

大数据

通常来说,大数据指的是从收集数据到利用的全过程,在实际工作中可以帮助企业采集到不同来源、不同格式的海量数据,然后通过预处理、存储和分析的方式进行利用。

企业对大数据的利用主要是对海量数据进行分析挖掘,根据得到的信息,实现对用户的精准营销、针对性广告推广等,辅助企业业务和管理人员更好地完成日常工作。

商业智能和大数据的关系

商业智能是一套为企业或组织机构设计的完整的数据类技术解决方案,能够帮企业解决数据孤岛,提供数据仓库、数据分析、可视化分析、多终端展现等功能。而大数据更偏向于对数据进行处理,通常都是采集海量数据,然后将这些数据进行存储分析,借助统计分析方法展现数据报告。两者间有差异也有相通之处。

商业智能(BI)

这个术语指在公司内部使用数据,帮助经理做出决策。

BI工具(报告、仪表板)告诉我们发生了什么,因此基于这些工具的决策将是被动的。

一个随机仪表板

大数据

这个解释起来就简单了:大数据就是大量的数据。

要定义大数据,通常会用3V来解释,这是产生大数据的3个主要原因:

· 容量:收集的数据量每分钟都在巨幅增长,我们需要使用分布式解决方案(使用多台机器,而不是非常非常昂贵的超级计算机/主机)来调整我们的存储和处理工具以适应该容量。

· 速度:处理数据的紧急程度与产生/获取数据的频率相关,还与决策中迫切使用数据的需求有关;即使是实时(或者几乎实时)。

· 种类:数据不再(仅)是结构化的,所以我们得忘记适用于传统数据库的东西。我们必须为添加各种格式的新数据源做准备;纯文本和多媒体内容都包括在内。

之后更多V被添加进来:真实性 (数据必须真实、可靠、可用)、价值(数据应有商业或 社会 价值)、易损性(数据必须合法、尊重隐私,并以安全的方式存储和访问)。

大数据可能是解决这些问题的方案。不要把它和本文解释的第一个概念混淆了:大数据就是实现或促进应用数据科学领域先进技术的事物,是数据的本质要求。例如,作为数据科学家,我们试图从数据集中得到答案。数据集不仅超过了RAM的大小,还超过了硬盘的大小。大数据为我们提供了跨多台机器承载数据的分布式存储技术,以及并行处理数据的分布式处理技术。

我们一起分享AI学习与发展的干货

欢迎关注全平台AI垂类自媒体 “读芯术”

简单来说,大数据可以更好的为商业智能服务,商业智能(BI)包括企业用于商业信息数据分析的策略和技术。商业智能技术提供业务运营的 历史 ,当前和预测性视图。商业智能技术的常见功能包括报告,在线分析处理,分析,数据挖掘,流程挖掘,复杂事件处理,业务绩效管理,基准测试,文本挖掘,预测分析和规范分析。 商业智能技术可以处理大量的结构化数据,有时还可以处理非结构化数据,以帮助识别,开发和创造新的战略商业机会。他们的目标是让这些大数据的解释变得容易。发现新机遇并基于洞察力实施有效战略可以为企业提供有竞争力的市场优势和长期稳定性。

商业智能可以被企业用来支持范围广泛的业务决策,从业务到战略。基本的运营决策包括产品定位或定价。战略业务决策涉及最广泛的优先级,目标和方向。在所有情况下,商业智能在将来自公司运营市场的数据(外部数据)与企业内部的公司数据(例如财务和运营数据(内部数据))数据相结合时最为有效。如果将外部和内部数据结合起来,可以提供完整的图像,实际上可以创建无法从任何单数据集中导出的“智能”。在众多用途中,商业智能工具使组织能够深入了解新市场,评估不同细分市场对产品和服务的需求和适宜性,并评估营销工作的影响。

大数据和商业智能BI的关系从应用上来讲,BI(BusinessIntelligence)即商业智能,它是一套完整的解决方案,用来将企业中现有的数据进行有效的整合,快速准确的提供报表并提出决策依据,帮助企业做出明智的业务经营决策。

商业智能BI在数据架构中处于前端分析的位置,其核心作用是对获取数据的多维度分析、数据的切片、数据的上钻和下钻、cube等。通过ETL数据抽取、转化形成一个完整的数据仓库、然后对数据仓库的数据进行抽取,而后是商业智能的前端分析和展示。

商业智能BI处理的数据量是极大的,如 FineBI商业智能,自带ETL,可在短时间内响应数据处理的请求,并输出分析结果。

BI对稳定性以及易用性有一定要求,这是其他数据分析工具所不能比拟的。

大数据的应用的数据来源包括结构化数据,如各种数据库、各种结构化文件、消息队列和应用系统数据等,其次才是非结构化数据。

大数据为商业智能提供了先决条件。

商业智能 指用现代数据仓库技术、线上分析处理技术、数据挖掘和数据展现技术进行数据分析以实现商业价值。

过去20年,中国企业经过一轮又一轮的信息化建设,已经积累的足够的数据基础,每个企业都拥有海量的数据。到了数字化时代,如何将这些数据价值扩大化,通过智能数据分析辅助企业做高效决策变得越来越关键,也为商业智能能够更加智能提供了基础。

当然,智能数据分析处理除了

到了2016年,一个巨大的时间点到来。几股浪潮已经融合在了一起,算法、算力和数据......我们看到了巨大的拐点,过去的数据分析和商业智能仍然有价值,但是它没有解决的问题——对于海量数据的 探索 ,对于未来的预测,对于异常诊断,对于行动的建议,因为这些技术浪潮的到来,成为了可能。

有哪位知道大数据和商业智能的区别是什么,帮忙给我说一下。

大数据具有4V特征,大量,多变,非结构化,而商业智能一般是处理企业内部的业务问题,是关系型数据库。

不过说到商业智能的话,国内有几家厂商做的不错,帆软finebi是我们现在用的。你可以试用一下,体会或许更深

大数据和BI商业智能有何区别?有何相关

大数据 ≠BI商业智能,大数据也不是传统商业智能的简单升级。

1、大数据和BI两者的区别

BI(BusinessIntelligence)即商业智能,它是企业数据化管理的一整套的方案,用来将企业中现有的数据进行有效的整合,快速准确的提供报表并提出决策依据,帮助企业做出明智的业务经营决策,解决的是管理运营战略的问题。

大数据(Big

Data)是指在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。大数据侧重于解决某一类问题的方法,比如全网用户画像,对网络、传感器等非结构化海量数据的分析。

不管定义如何不同,大数据与传统BI是社会发展到不同阶段的产物,大数据对于传统BI,既有继承,也有发展,从"道"的角度讲,BI与大数据区别在于前者更倾向于决策,对事实描述更多是基于群体共性,帮助决策者掌握宏观统计趋势,适合经营运营指标支撑类问题,大数据则内涵更广,倾向于刻画个体,更多的在于个性化的决策。

当然纯粹从思想的角度讲,两者在概念上是可以实现统一的,都遵循数据-信息-知识-智慧这个脉络,甚至在更高的层次,两者也是可以统一的。

大数据不是空口说说,它的第一要务就是解决业务问题,大数据一定程度上就是用全新的数据技术手段来拓展和优化业务,传统企业需要聚集一拨人来研究这个问题,需要有人专门研究和探索。如果对外,想清楚新的商业模式,如果对内,想清楚在哪个场景,可以用大数据的手段提升效率。

当前大数据可以产生价值的地方,从行业的角度看,金融、银行、互联网、医疗、科研都有广阔的前景。从领域的角度看,广告、营销、风控、供应链都是大数据发挥价值的地方,对于特定企业,比如电信运营商,大数据也可以在网络优化等方面提供新方法。

并不是每个企业都需要打造自己的大数据平台,需要考虑到企业的信息化水平和各项成本,量力而行吧,可以自行研发 ,比如BAT;也可以选型采购,比如传统大企业;中小型企业也可以租用,比如用阿里云和AWS。

就事实来讲,BI的应用是远远大于大数据应用的,有其通用的道理。大数据相对于传统BI,也不仅仅是简单的PLUS的关系,它涉及了思想、工具和人员深层次的变革,BI人员既不要一提大数据,就嗤之以鼻,认为它是新包装的马甲,其实就那么回事;也不需妄自菲薄,以为搞大数据就那么高大上,它的确是BI大多数思想的传承。

商业智能与大数据之间的差异可以从哪几个方面体现

商业智能的概念于1996年最早由加特纳集团(Gartner Group)提出,加特纳集团将商业智能定义为:商业智能描述了一系列的概念和方法,通过应用基于事实的支持系统来辅助商业决策的制定。商业智能技术提供使企业迅速分析数据的技术和方法,包括收集、管理和分析数据,将这些数据转化为有用的信息,然后分发到企业各处。

商业智能又名商务智能,英文为Business Intelligence,简写为BI。

商业智能通常被理解为将企业中现有的数据转化为知识,帮助企业做出明智的业务经营决策的工具。这里所谈的数据包括来自企业业务系统的订单、库存、交易账目、客户和供应商等来自企业所处行业和竞争对手的数据以及来自企业所处的其他外部环境中的各种数据。而商业智能能够辅助的业务经营决策,既可以是操作层的,也可以是战术层和战略层的决策。为了将数据转化为知识,需要利用数据仓库、联机分析处理(OLAP)工具和数据挖掘等技术。因此,从技术层面上讲,商业智能不是什么新技术,它只是数据仓库、OLAP和数据挖掘等技术的综合运用。

可以认为,商业智能是对商业信息的搜集、管理和分析过程,目的是使企业的各级决策者获得知识或洞察力(insight),促使他们做出对企业更有利的决策。商业智能一般由数据仓库、联机分析处理、数据挖掘、数据备份和恢复等部分组成。商业智能的实现涉及到软件、硬件、咨询服务及应用,其基本体系结构包括数据仓库、联机分析处理和数据挖掘三个部分。

因此,把商业智能看成是一种解决方案应该比较恰当。商业智能的关键是从许多来自不同的企业运作系统的数据中提取出有用的数据并进行清理,以保证数据的正确性,然后经过抽取(Extraction)、转换(Transformation)和装载(Load),即ETL过程,合并到一个企业级的数据仓库里,从而得到企业数据的一个全局视图,在此基础上利用合适的查询和分析工具、数据挖掘工具、OLAP工具等对其进行分析和处理(这时信息变为辅助决策的知识),最后将知识呈现给管理者,为管理者的决策过程提供支持。

提供商业智能解决方案的著名IT厂商包括微软、IBM、Oracle、SAP、Informatica、Microstrategy、SAS、Royalsoft等。


原文链接:https://527256.com/31535.html

相关文章

访客
访客
发布于 2022-09-06 13:08:04  回复
长期稳定性。 商业智能可以被企业用来支持范围广泛的业务决策,从业务到战略。基本的运营决策包括产品定位或定价。战略业务决策涉及最广泛的优先级,目标和方向。在所有情况下,商业智能在

发表评论:

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

返回顶部