本文目录一览:
- 1、蒸馏分离-催化光度法测定锇、钌
- 2、蒸馏操作的步骤
- 3、铑的提纯方法过程?
- 4、废贵重金属如何提炼
- 5、锇钌的精练
蒸馏分离-催化光度法测定锇、钌
方法提要
RuO4和OsO4具有挥发性,利用该特性,用蒸馏的方法使它们与伴生金属分离。选择适当的氧化剂或吸收剂,使锇和钌再分离,然后利用锇、钌对Ce4+-As3+系统的催化作用进行催化光度法测定。固定时间法测得的吸光度A的负对数与锇(或钌)的浓度有良好的线性关系,适用于锇、钌含量低的试样,测定的浓度范围为锇0.5~2.5ng/mL,钌0.2~1ng/mL。固定浓度法测得的反应时间t的倒数与锇(或钌)的浓度有良好的线性关系,适用于锇、钌含量较高的试样,测定的浓度范围为锇2~16ng/mL,钌1~5ng/mL。
蒸馏装置见图64.1。
图64.1 锇钌蒸馏器(数字单位:mm)
试剂
氢氧化钠。
过氧化钠。
乙醇。
硫酸。
盐酸。
氯化钠溶液(20g/L)。
高锰酸钾溶液(15g/L)。
溴酸钠溶液(15g/L)。
氯化钠溶液(200g/L)。
锇吸收液(0.05mol/LAs2O3-2mol/LH2SO4溶液)称取10.0g三氧化二砷于250mL烧杯中,加入5gNaOH及约20mL水,加热溶解后移入1000mL容量瓶,加水稀释至700mL左右,加入230mL(1+1)H2SO4,冷却,用水稀释至刻度,摇匀。
锇稀释液吸取100mL锇吸收液于200mL容量瓶中。加入8mL乙醇,用水稀释至刻度,摇匀。
钌吸收液称取0.15g亚硫酸钠,置于1000mL容量瓶中,加600mL水,加100mL100g/L硫酸汞溶液,立即摇匀。加入40mL乙醇,再加入222mL(1+1)H2SO4,用水稀释至刻度,摇匀。
三氧化二砷溶液(0.05mol/LAs2O3-1mol/LH2SO4溶液)称取10.0gAs2O3,加入5gNaOH及约20mL水,加热溶解后,用水稀释至约700mL,加入118mL(1+1)H2SO4,冷却,移入1000mL容量瓶中,用水稀释至刻度,摇匀。
硫酸汞溶液(50g/LHgSO4-1mol/LH2SO4)称取25g硫酸汞,溶于500mL1mol/LH2SO4。
硫酸铈铵溶液称取11g硫酸铈铵,溶于500mL1mol/LH2SO4中。
钌标准储备溶液ρ(Ru)=100.0μg/mL准确称取32.92mg光谱纯氯钌酸铵[(NH4)2Ru(H2O)Cl5],置于100mL烧杯中,用1mol/LH2SO4使之溶解,并将其移入100mL容量瓶中,用1mol/LH2SO4稀释至刻度,摇匀。
钌标准溶液ρ(Ru)=1.0ng/mL用钌标准储备溶液(100.0μg/mL)逐级用1mol/LH2SO4稀释配制。
锇标准储备溶液ρ(Os)=100.0μg/mL准确称取23.08mg光谱纯氯钌酸铵[(NH4)2OsCl6],置于100mL烧杯中,用1mol/LH2SO4使之溶解,并将其移入100mL容量瓶中,用1mol/LH2SO4稀释至刻度,摇匀。
锇标准溶液ρ(Os)=20.0ng/mL用锇标准储备溶液(100.0ng/mL)逐级用1mol/LH2SO4稀释配制。
钌的校准曲线
(1)固定时间法
移取0.00mL、0.02mL、0.04mL、0.06mL、0.08mL、0.12mL、0.16mL、0.20mL钌标准溶液(1.0ng/mL),置于25mL比色管中。用1mol/LH2SO4补足至2mL。加入2mL三氧化二砷溶液、1mL硫酸汞溶液,摇匀。再加入1mL硫酸铈铵溶液,摇匀。在恒温水浴或室温放置一定时间(以校准曲线中的最高钌量之吸光度值降至0.3附近时所需时间来确定),以水作参比,用1cm比色皿,在波长420nm处测量溶液的吸光度A和试剂空白吸光度A0,以lg(A0/A)对钌量作图,绘制校准曲线。
(2)固定浓度法
移取0.00mL、0.05mL、0.10mL、0.20mL、0.30mL、0.40mL锇标准溶液(1.0ng/mL),置于25mL比色管中。补加1mol/LH2SO4至2mL。加入2mL三氧化二砷溶液、1mL硫酸汞溶液,摇匀。置于35℃恒温水浴中20min(若含量高可降低温度),迅速加入1.00mL已恒温至相同温度的硫酸铈铵溶液,摇匀;同时立即启动秒表计时,将溶液移入1cm比色皿中,在波长420nm处测量溶液的吸光度降至0.3所需的时间,求出1/t值。对钌量作图,绘制校准曲线。
锇的校准曲线
(1)固定时间法
移取0.00mL、0.20mL、0.40mL、0.60mL、0.80mL、1.00mL钌标准溶液(20.0ng/mL),置于25mL比色管中,补加锇稀释液至5mL。加入2mL三氧化二砷溶液、1mL硫酸汞溶液,摇匀。再加入1mL硫酸铈铵溶液,以下步骤同钌的固定时间法校准曲线。
(2)固定浓度法
移取0.00mL、0.20mL、0.40mL、0.60mL、0.80mL、1.20mL、1.60mL钌标准溶液(100.0ng/mL),置于25mL比色管中,补加锇稀释液至5mL。加入2mL三氧化二砷溶液、1mL硫酸汞溶液,摇匀。置于35℃恒温水浴中20min,以下步骤同钌的固定浓度法校准曲线。
分析步骤
称取5g(精确至0.1g)试样于50mL高温坩埚中,加入2倍的过氧化钠,混匀,再覆盖约2倍的过氧化钠,放入已升至700~750℃的高温炉中熔融20~30min取出,冷却。若试样中含硫、碳或有机物较多,用过氧化钠直接熔融会使坩埚炸裂,因此要先焙烧。在焙烧过程中,锇易氧化为OsO4挥发损失。为减少损失,加少量NaOH作Os的保护剂,从低温缓慢升至500℃并焙烧10~20min,就能使硫、碳或有机物分解完全。焙烧完毕,取出,趁热在不断摇动下撒入过氧化钠直到剧烈反应停止。再分次加入约15g过氧化钠,再在700~750℃熔融15~20min,取出坩埚,冷却,放入预先盛有200mL水的500mL烧杯中浸取。剧烈反应后,用水洗净坩埚,并将浸取物用水洗入蒸馏瓶中,加入几粒玻璃珠。连接蒸馏瓶与支管,并在瓶颈及蒸馏瓶和支管连接之磨口处滴加数滴(1+1)H2SO4。在第一吸收管中加入25mL钌吸收液,第二吸收管中加入25mL锇吸收液。将吸收管与导管连接,从漏斗中慢慢加入120mL(1+1)H2SO4,摇动蒸馏瓶使沉淀完全溶解。再加入10mL高锰酸钾溶液和10mL溴酸钠溶液及4~5滴氯化钠溶液。洗净漏斗,关闭活塞。
将蒸馏瓶架于可调电炉上,第二吸收管浸入冷水槽中。加热蒸馏,待溶液沸腾后适当调节炉温。蒸馏进行到第二吸收管内溶液增至37~40mL时,迅速取下导管和吸收系统,将吸收管置于水中冷却至室温,用水稀释至50mL刻度,摇匀。第一吸收管中溶液测定钌,第二吸收管中溶液测定锇。
(1)钌的测定
移取1.0~2.0mL第一吸收管中溶液于干的25mL比色管中,不足2mL时,用1mol/LH2SO4补足至2mL。以下步骤同校准曲线,用固定时间法或固定浓度法测定。
(2)锇的测定
移取1.0~5.0mL第二吸收管中溶液于干的25mL比色管中,补加锇稀释液至5mL,以下步骤同校准曲线,用固定时间法或固定浓度法测定。
钌、锇含量的计算参见式(64.2)。
注意事项
1)坩埚的选择:按照传统方法,用过氧化钠熔解贵金属时,通常使用铁坩埚。测定1×10-9以上的锇、钌时,使用铁坩埚对其影响不大。测定1×10-9以下的锇钌时,其空白值对测定结果影响很大,尤其对0.0x×10-9的锇、钌,基本上是测不准确的。试验发现,高铝坩埚的空白值远远低于铁坩埚。
2)Na2O2的选择:通常使用的Na2O2中锇、钌空白值较高。由于Na2O2用量大,氧化性强,实际提纯困难较大。故应选用空白值低的Na2O2产品。
3)蒸馏装置:蒸馏器必须是全部磨口玻璃连接,保持干净。任何有机物都会把四氧化钌还原成不挥发的钌的低价化合物而沉积在容器上、导管壁上。连接处不能涂油脂类的润滑剂,可用硫酸或高氯酸代替之。
4)氧化剂的选用:氧化还原电位因配合物的配位体不同而改变,氧化剂的氧化还原电位也受溶液中的酸度和其他物质的影响而改变。在蒸馏锇、钌所使用的氧化剂中,人们通常选择价格便宜、氧化能力强的KMnO4。对于痕量分析,KMnO4的氧化能力及空白值均能满足需要。对于超痕量分析,KMnO4的空白值已经超出我们的要求。对几种主要的氧化剂进行空白值检查,结果见表64.13。
表64.13 不同氧化剂的空白值 (wB∶10-9)
从表64.13可以看出,K2Cr2O7、NaBrO3、KIO4的空白值都比较低。但是,用K2Cr2O7或KIO4作氧化剂时,钌的回收率只有70%,锇的回收率还不到70%;用NaBrO3作氧化剂时,也会分解出大量的Br,干扰测定。
所以选用高锰酸钾和溴酸钠混合氧化剂用于蒸馏锇、钌。这种混合氧化剂既能提高锇、钌的回收率,又不会析出干扰测定的物质。
5)酸度对反应速度的影响:选用0.5mol/L、1.5mol/L、2mol/L硫酸介质,考察其对锇、钌反应速度的影响。结果看出,体系酸度越小,反应速度越快,灵敏度越高。当体系酸度到达0.5mol/L时,虽然反应速度大大提高,整个体系却处于不稳定状态,而且曲线线性关系不好。因此,采用1mol/L的硫酸酸度。
6)As、Ce用量对锇钌催化As3+-Ce4+反应速度的影响:As3+-Ce4+反应速度随As3+浓度的增大而加快,即反应速度随[As3+]/[Ce4+]比值的增加而增加。当增加到一定程度时,曲线向下弯曲,线性不好。因此选定的砷用量为0.05mol/L的As2O32mL,铈用量为0.02mol/L的硫酸铈铵1.00mL。
7)温度、时间对反应速度的影响:一般来说,温度高则催化时间短,温度低则催化时间长。如果温度过高,反应速度过快,曲线陡峭,线性关系被破坏,浓度范围也相应缩小。温度太低,反应速度缓慢,曲线斜率太小。需通过实验确定合适的反应温度和反应时间。准确的测定要求反应温度控制在±0.2℃以内。
蒸馏操作的步骤
1、搭设装置,2、加热水蒸汽发生器,同时添加药品于三口瓶中,3、T形夹冒蒸汽后关闭T形夹,同时打开水源,放冷凝水,4、三口瓶中澄清后,蒸馏结束,打开T形夹,关闭热源,关闭冷凝水水源.
铑的提纯方法过程?
铑作为铂族金属的重要一员,具有其独特的物理特性和化学特性,因为其高催化活性以及多选择性,在石油工业催化剂、汽车尾气净化器、催化加氢等方面得到了广泛应用,因此在市场中具有极高的需求量。
废贵金属铑回收[1]
废贵金属催化剂的处理
废贵金属铑催化剂大多存在于汽车尾气催化剂中,除此之外,在石油工业催化剂、玻璃玻纤工业以及镀层的废渣废液中也十分常见。铑的分离和提取工艺具有一定的复杂性,废料再生回收工艺流程冗长,且不同的形态及性质对应回收技术也不尽相同,对于技术水平有极高的要求。现阶段,废贵金属催化剂铑的回收方法可分为下述两种方式。第一,湿法回收。湿法回收涵盖了萃取法、沉淀法、氧化蒸馏法、洗涤法等多种方法,各个方法均各有利弊,需要与废贵金属催化剂的性质特点相结合进行合理选择,也有报道将几种分离工艺耦合以获得更优的铑回收率。第二,火法回收。火法回收法主要包括熔炼法和燃烧法,其中熔炼法指的是在高温环境下将贵金属和载体分离后进行回收;燃烧法适用于载体为碳质的催化剂,燃尽载体后进行贵金属的提取和回收。
废贵金属铑催化剂的预处理
大多数工业所应用的铑催化剂的主要载体为活性炭、氧化铝等。废贵金属铑催化剂中存在较多难溶固体类、有机磷、硫类杂质等,不利于铑的提取,而废贵金属铑催化剂中存在的杂质会严重阻碍铑工艺的顺利进行,所以做好预处理作业十分重要。首先需要将废贵金属铑催化剂与碱金属或碱土金属化合物混合,经过高温燃烧,将表层的一些杂质清除,如有机物和积炭,之后将其放在氧化剂和无机酸中自行溶解,再通过少量碱对溶液pH值进行调节,这样便能够获得沉淀的氢氧化铑。之后进行盐酸溶解便能够得到氯化铑的溶液。通过离子交换树脂将贱金属中的杂质清除,通过重结晶获得纯度极高的水合氯化铑。根据相关研究显示在废贵金属铑催化剂的预处理过程中,在坩埚中均匀混合一定数量的废贵金属铑催化剂和一定数量的添加剂,基于一定的升温条件在电阻炉中进行焙烧,待其冷却后研细焙烤残渣便能够得到铑灰,并再使用盐酸将其溶解,可得到较高的铑液相回收率。
废贵重金属如何提炼
专利光盘:C52贵金属的提炼和回收技术 [C52-001]TDI氢化废钯碳催化剂中回收钯的工艺方法 [C52-002]氨氧化炉废料回收铂金的方法 [C52-003]奥沙利铂的制备 [C52-004]奥沙利铂提纯 [C52-005]钯催化剂的回收 [C52-006]便于分离和回收利用的贵金属纳米粒子的制备方法 [C52-007]铂催化剂的回收方法 [C52-008]铂配合物及其制备方法和用途 [C52-009]铂族金属回收中的改进 [C52-010]铂族金属硫化矿或其浮选精矿提取铂族金属及铜镍钴 [C52-011]纯铂或铂合金快速溶解法及应用 [C52-012]从铂铑合金中分离出铂铑的方法 [C52-013]从碲多金属矿中提取精碲的工艺方法 [C52-014]从电解生产双氧水的阳极泥回收铂和铅的方法 [C52-015]从非极性有机溶液中回收催化金属 [C52-016]从废钯碳催化剂回收钯的方法及焚烧炉系统 [C52-017]从废钯碳催化剂中回收钯的方法 [C52-018]从废催化剂回收铂的方法 [C52-019]从废催化剂回收金和钯的方法及液体输送阀 [C52-020]从废催化剂中回收铂的方法 [C52-021]从废催化剂中回收铂族金属的方法 [C52-022]从废铝基催化剂回收铂及铝的方法和消化炉 [C52-023]从废重整催化剂中回收铂、铼、铝等金属的方法 [C52-024]从贵金属微粒分散液中回收贵金属的方法 [C52-025]从含铂碘化银渣中回收银铂的方法 [C52-026]从含碳矿物中回收贵金属的方法 [C52-027]从精矿中回收贵金属的方法 [C52-028]从难处理矿石回收贵金属值的方法 [C52-029]从汽车尾气废催化剂中回收铂、钯、铑的方法 [C52-030]从羰化反应剩余物中回收铑的方法 [C52-031]从羰基化反应产物中回收铑 [C52-032]从铜阳极泥中回收金铂钯和碲 [C52-033]从烯烃羰基化催化剂废液中回收金属铑的方法 [C52-034]从氧化合成反应产物中回收铑的方法 [C52-035]从有机混合物分离铑的方法 [C52-036]粗铑及含铑量高的合金废料的溶解与提纯方法 [C52-037]萃取分离金和钯的萃取剂及其应用 [C52-038]低品位及难处理贵金属物料的富集活化溶解方法 [C52-039]第Ⅷ族贵金属的回收工艺 [C52-040]电子废料的贵金属再生回收方法 [C52-041]复杂组分溶液中高含量锇、钌的测定方法 [C52-042]改性石硫合剂提取贵金属的方法 [C52-043]贵金属的回收 [C52-044]第Ⅷ族贵金属的回收工艺2 [C52-045]贵金属的回收方法 [C52-046]羰基化反应残余物中贵金属的回收 [C52-047]贵金属的回收方法3 [C52-048]贵金属的碎化溶解方法 [C52-049]贵金属和有色金属硫化矿复合浮选药剂 [C52-050]贵金属铑的回收 [C52-051]贵金属熔炼渣湿法冶金工艺 [C52-052]贵金属提取用的保温电解槽 [C52-053]贵金属提取用的电解槽 [C52-054]含贵金属废水回收处理装置 [C52-055]回收低钯含量废催化剂的方法 [C52-056]一种从含有贵金属的废催化剂中回收贵金属的方法 [C52-057]从贵金属微粒分散液中回收贵金属的方法4 [C52-058]用超临界水反应剂自有机贵金属组合物回收贵金属 [C52-059]由贵金属矿中回收贵金属有用成分的湿法冶金方法 [C52-060]从含碳矿物中回收贵金属的方法5 [C52-061]从难处理矿石回收贵金属值的方法6 [C52-062]回收贵金属 [C52-063]回收贵金属和叔膦的方法 [C52-064]从精矿中回收贵金属的方法7 [C52-065]用不混溶液体从羰基化反应残余物中回收贵金属 [C52-066]从废铑催化剂残液中回收金属铑的方法 [C52-067]回收贵金属和叔膦的方法8 [C52-068]回收铑催化剂的方法 [C52-069]一种从羰基合成反应废铑催化剂中回收铑的方法 [C52-070]回收铑的方法 [C52-071]回收铑的方法9 [C52-072]回收铑的方法10 [C52-073]从羰化反应剩余物中回收铑的方法11 [C52-074]从氧化合成反应产物中回收铑的方法12 [C52-075]一种从羰基合成产物的蒸馏残渣中回收铑的方法 [C52-076]铑催化剂的处理方法 [C52-077]利用加压氢还原分离提纯铱的方法 [C52-078]利用引晶生长法制备均匀球形铂颗粒的方法 [C52-079]溶液中铑、铱与金、铂、钯分离富集方法 [C52-080]顺铂细粉及其制备方法 [C52-081]钛基材料镀铂方法 [C52-082]通过煅烧含金属的碱性离子交换树脂来回收金属的方法 [C52-083]无铑亮黄金水及制备方法 [C52-084]吸附在活性炭上的贵金属的提取方法和系统 [C52-085]吸附在活性炭上的贵金属的洗脱方法 [C52-086]锡阳极泥提取贵金属和有价金属的方法 [C52-087]硝酸装置贵金属回收器 [C52-088]岩石风化土吸附型稀散贵金属的提取技术方案 [C52-089]一种钯催化剂再生方法 [C52-090]一种从羰基合成产物的蒸馏残渣中回收铑的方法13 [C52-091]一种从羰基合成反应废铑催化剂中回收铑的方法14 [C52-092]一种分离铂钯铱金的方法 [C52-093]一种分离提纯贵金属的方法 [C52-094]一种合成羟胺盐的贵金属催化剂的再生方法 [C52-095]一种环状氨基甲酸酯类贵金属萃取剂 [C52-096]一种纳米级铂族金属簇的制备方法 [C52-097]一种生产精炼铂的工艺 [C52-098]一种双取代环状碳酸酯类贵金属萃取剂 [C52-099]一种提取锇、铱、钌的方法 [C52-100]一种提取金属钯的方法 [C52-101]铱的回收和提纯方法 [C52-102]用不混溶液体从羰基化反应残余物中回收贵金属15 [C52-103]用超临界水反应剂自有机贵金属组合物回收贵金属16 [C52-104]用控制电位法从阳极泥提取贵金属 [C52-105]用硫醚配位体从水溶液中分离钯的方法 [C52-106]由贵金属矿中回收贵金属有用成分的湿法冶金方法17 [C52-107]有机螯合剂促进活性碳纤维还原吸附贵金属离子的方法 [C52-108]真空蒸馏提锌和富集稀贵金属法 [C52-109]制备铂(Ⅱ)配合物的一种方法 [C52-110]制备铂化合物的方法 [C52-111]制备铂化合物的方法18 [C52-112]制备纳米贵金属微粒的方法 [C52-113]制取纯钯的方法 [C52-114]制取纯铱的方法 [C52-115]从低品位锡矿中直接提取金属锡的方法 [C52-116]从电解生产双氧水的阳极泥回收铂和铅的方法19 [C52-117]从镀锡、浸锡和焊锡的金属废料回收锡的方法及其装置 [C52-118]从粉状金属物料直接电解回收锡铅合金的方法 [C52-119]从黄杂铜中分离铜、锌、铅、铁、锡的工艺方法 [C52-120]从炼铜废渣中回收锡、铜、铅、锌等金属的方法 [C52-121]从硫化铅精矿冶炼金属铅的设备 [C52-122]从氯化渣中综合回收金银及铅锡等有价金属的方法 [C52-123]从铅锑粗合金中分离铅锑的方法 [C52-124]从铅阳极泥提取金、银及回收锑、铋、铜、铅的方法 [C52-125]从铅阳极泥中回收银、金、锑、铜、铅的方法 [C52-126]从铅阳极泥中回收银、金、锑、铜、铅的方法20 [C52-127]从碳酸中除去铅和镉的方法 [C52-128]从钨酸盐溶液中沉淀除钼、砷、锑、锡的方法 [C52-129]从锡精矿直接制取锡酸钠的生产方法 [C52-130]从锡矿石中萃取锡 [C52-131]脆硫铅锑矿铅锑直接分离新工艺 [C52-132]脆硫铅锑尾矿的处理方法 [C52-133]低质粗锡直接电解生产优质精锡的方法 [C52-134]底吹炉高铅渣液态直接还原炼铅的方法 [C52-135]电解法制备高纯度活性二氧化铅的方法 [C52-136]废旧电池铅回收的方法 [C52-137]废旧蓄电池铅清洁回收方法 [C52-138]废旧蓄电池铅清洁回收技术 [C52-139]废铅熔炼回转炉 [C52-140]废铅酸蓄电池生产再生铅、红丹和硝酸铅 [C52-141]废铅蓄电池回收铅技术 [C52-142]分离回收镀白铜针铜锡的方法及其阳极滚筒装置 [C52-143]分离冶金炉尘中锌铅的新工艺 [C52-144]高活性微米纯铅粉制造技术 [C52-145]高铅锑分离法 [C52-146]高铟高铁锌精矿的铟、铁、银、锡等金属回收新工艺 [C52-147]固相反应制备二氧化锡纳米晶的方法 [C52-148]含锑粗锡分离锑的方法 [C52-149]含铁、锰、锌、铅的烟尘回收铅、锌的方法 [C52-150]含锡渣直接电解生产精锡的工艺 [C52-151]褐煤炼锡 [C52-152]黑铜提锡工艺 [C52-153]降铅液及其制备方法 [C52-154]利用含铅废渣生产铅盐的方法 [C52-155]纳米锑掺杂的二氧化锡水性浆料及其制备方法 [C52-156]浅色锑掺杂纳米氧化锡粉体的制备方法 [C52-157]纳米氧化锡粉体的制备方法 [C52-158]难选锡中矿的高温氯化方法 [C52-159]贫锡复杂物料高温氯化焙烧工艺 [C52-160]铅炉渣磁选富集有价金属及其冶炼方法 [C52-161]铅锑冶炼废渣处理方法 [C52-162]铅锌矿的全湿法预处理方法 [C52-163]一种无污染含铅废弃物再生纯铅冶炼工艺 [C52-164]铅冶炼工艺 [C52-165]浅色锑掺杂纳米氧化锡粉体的制备方法21 [C52-166]生铅和精铅的除铊方法 [C52-167]湿法炼铅的一种工艺 [C52-168]水口山炼铅法 [C52-169]碳酸钠转化处理铅基金矿或铅矿工艺 [C52-170]锑火法精炼除铅法及其液态除铅剂 [C52-171]锑铅合金用硫除铅的方法 [C52-172]铜锡混杂屑末的分离方法 [C52-173]退锡或锡铅废液中回收锡的方法 [C52-174]脱铋浮渣的脱铅方法 [C52-175]无污染炼铅方法 [C52-176]无氧化锡球颗粒的制备方法及所使用的成型机 [C52-177]锡矿氯化挥发法 [C52-178]锡粒的制备方法 [C52-179]镀锡钢板电镀用锡粒的制备方法 [C52-180]锡石多金属硫化矿无抑制选矿工艺流程 [C52-181]锡中矿水冶法制取海绵锡和锡盐 [C52-182]锡中矿液相氧化法制取二氧化锡 [C52-183]新式铅冶炼反射炉 [C52-184]氧化铟锡粉末的制备方法 [C52-185]一种从废蓄电池回收铅的方法 [C52-186]一种从铁水中提锡的方法 [C52-187]一种火法处理锑贵铅工艺 [C52-188]一种铅锌多金属硫化矿的分离方法 [C52-189]一种锑的熔融萃取精炼除铅剂 [C52-190]一种无污染含铅废弃物再生纯铅冶炼工艺22 [C52-191]一种由方铅矿制备铅盐新工艺 [C52-192]以废蓄电池渣泥生产活性铅粉的方法 [C52-193]用粗焊锡生产高纯锡的工艺 [C52-194]用反射炉复合法炼铅的方法 [C52-195]用硅氟酸从硫化铅精矿浸取铅的工艺 [C52-196]用硫化铅矿直接提炼金属铅的方法 [C52-197]用绒毯溜槽从重选尾矿中回收钨、锡矿物的选矿方法 [C52-198]用于铅锌矿选择浮选的捕集剂及其制备方法 [C52-199]用于铅锌矿选择浮选的捕集剂用途 [C52-200]用于选择性浮选铅锌矿的促集剂 [C52-201]由铅阳极泥制取硝酸银、回收铜、铅、锑的方法 [C52-202]由铜合金制成的自来水管件的选择性除铅的工艺及除铅液 [C52-203]再生铅的冶炼方法 [C52-204]在中性介质中用电解还原回收废蓄电池中的铅方法 [C52-205]重选用于选别细粒浸染状构造低品位铅锌矿 [C52-206]回收废钯或氧化铝催化剂中金属钯的方法 [C52-207]铂族金属的分离,回收方法 [C52-208]通过许多破碎悬浮阶段从燃煤炉渣中回收贵金属 [C52-209]一种从羰基合成产物中回收铑的工艺 [C52-210]一种纳米贵金属及其制备方法和应用 [C52-211]用萃取法回收废催化剂中的铂 [C52-212]用巯基胺型螯合树脂回收电镀废液中的金和钯 [C52-213]用细菌菌体从低浓度的钯离子废液中回收钯的方法 [C52-214]在聚乙烯吡啶上捕集气态钌的方法, 特别用于从辐照核燃料中回收放射性钌 [C52-215]彩钼铅矿的化学分选方法 [C52-216]从方铅矿中直接提取铅的方法及设备 [C52-217]从含氧化铅和或金属铅的材料提取金属铅的湿冶法 [C52-218]粗锡精炼除铅.铋的方法及装置 [C52-219]纳米晶氧化铒-氧化锡粉体材料及其制备方法和用途 [C52-220]铅-锑粗合金离心偏析分离法 [C52-221]一种铜转炉烟灰矿渣成团冶炼铅的新工艺及其成团配方 [C52-222]应用混合捕集剂作为非硫化物矿,特别是锡石的浮选助剂 [C52-223]用熔融态锡金属回收处理印刷电路板的方法及其装置 [C52-224]直接铅熔炼生产金属铅的一种方法 详见: ;ref=ali_trackid=2:mm_12637321_0_0,12014693:102410930_1_660859680
锇钌的精练
建议你去专业网站上问一下
从一般角度来说,我认为没有的
因为不同的设备,使用条件不同,制造材料和制造工艺会有差别
发布于 2022-07-04 18:17:41 回复
发布于 2022-07-04 12:08:19 回复