本文目录一览:
- 1、光催化“万金油”!Nature子刊,提升产氢性能只需复合这种纳米片
- 2、工业上有哪些方法可以产生氢气?
- 3、如果无贵重金属燃料电池问世,会带来哪些好处?
- 4、化学!!!氢气的制造方法
- 5、单原子催化在催化上究竟是昙花一现还是发展新趋势?
光催化“万金油”!Nature子刊,提升产氢性能只需复合这种纳米片
第一作者:Jingrun Ran, Hongping Zhang, Sijia Fu
通讯作者: 乔世璋
通讯单位:澳大利亚阿德莱德大学
论文DOI:
全文速览
高性能、低成本的光催化剂是实现大规模太阳能制氢的关键。本文报告了一种液体剥离方法来制备 NiPS3 超薄纳米片。该纳米片可作为一种多功能平台,能够极大地改善各种光催化剂(包括 TiO2、CdS、In2ZnS4 和 C3N4)上的光催化产氢性能。与纯 CdS 相比,NiPS3/CdS 异质结具有最高的改进因子(~1,667%),实现了极高的可见光诱导制氢速率(13,600 μmol h-1g-1)。这种更好的性能归因于强关联的 NiPS3/CdS 界面确保了有效的电子-空穴解离/传输;以及 NiPS3超薄纳米片上丰富的原子级边缘 P/S 位点和活化的S 位点,促进了氢的析出。这些发现通过最先进的表征和理论计算来证明。该工作首次证明了金属磷硫属化物可作为一个通用平台的巨大潜力,能极大地提高不同光催化剂的性能。
背景介绍
不可再生化石燃料的大量消耗导致全球能源短缺、环境污染和气候变化。因此,寻找可再生、清洁和无碳的能源至关重要。太阳能光催化水分解产氢 (H2) 被认为是一种有前途、廉价且环境友好的技术,其可利用阳光生产绿色 H2 燃料。然而,迄今为止开发的光催化剂效率低、稳定性差、价格高,严重制约了光催化工艺的大规模应用。因此,寻找高活性、稳定和廉价的光催化剂对于实现工业规模的太阳能制氢具有重要意义。高性能光催化剂的合理设计和制备,不仅需要从原子级尺度理解结构/组成-活性关系,还需要精确而深刻地理解光催化剂中的光生电子-空穴的动力学和热力学。结合原子分辨率像差校正扫描透射电子显微镜 (AC-STEM) 和理论计算,研究人员可以提供关于光催化剂的结构/组成-活性关系的原子级阐释。特别是,通过上述方法可以准确地揭示光催化剂中存在的各种原子级反应位点,例如单原子、边缘位点和缺陷。另一方面,光生电子和空穴的分离/迁移在确定整体光催化性能方面起着关键作用。因此,必须采用各种先进的表征,例如超快瞬态吸收光谱 (TAS)、瞬态表面光电压 (SPV) 光谱、瞬态光致发光 (PL) 光谱和原位 X 射线光电子能谱 (XPS),对光生电子/空穴的动力学和热力学进行时间分辨研究,特别是在光催化剂表面。此外,将上述两种策略结合起来,同时评估光催化剂的原子级结构/组成-性能关系和时间分辨电荷载流子分离/转移机制,是具有重要意义的。
图文解析
图1. NiPS3 UNS的理论预测、表征和应用。a NiPS3 单层 (100) 边缘的 HER 活性 P、S2 和 S3 位点。b NiPS3单层 (010) 边缘的 HER 活性 S 位点。c 在 NiPS3单层的 (1-30) 边缘处的 HER 活性 P1、S2、S3 和 S8 位点。d 在 NiPS3单层的 (100) 边缘、(010) 边缘或 (1-30) 边缘的活性位点上,遵循 Volmer-Heyrovsky 路径的 HER 吉布斯自由能图。e 在NiPS3 单层的 (100) 或(1-30) 边缘的活性位点上,遵循 Volmer-Tafel 路径的 HER 吉布斯自由能图。NiPS3 UNS 的 f 基面和 g 边缘的原子分辨率HAADF-STEM 图像。h NiPS3 UNS 的(基于同步加速器的)Ni L2,3-edge XANES。i TiO2、NiPS3/TiO2、CdS、NiPS3/CdS、In2ZnS4、NiPS3/In2ZnS4、C3N4和 NiPS3/C3N4在约 17.0 vol% 三乙醇胺水溶液中的光催化产氢速率。
图 2. 20.0N 的形貌、微观结构和化学成分。a TEM 图像和 b HRTEM 图像。在 20.0 N 中,c NiPS3 UNSs 和 d CdS NPs的原子分辨率 HAADF-STEM 图像。e 20.0N的EDX 光谱。f 20.0N 的 Ni L2,3-edge EELS 光谱。g 20.0N 的 HAADF-STEM 图像,和 20.0N 中 h Cd、i S、j Ni 和 k P 元素的相应元素mapping图像。注意:将不同体积的 NiPS3 UNSs 乙醇溶液(5.0、10.0、20.0 和 30.0 ml)分别添加到研钵中,在室温下通过机械研磨与 50 mg CdS NPs 复合。所得的光催化剂分别标记为 5.0N、10.0N、20.0N 和 30.0N。纯 CdS NPs 表示为0.0N。
图 3. NiPS3/CdS 系统中的强电子相互作用。a NiPS3UNS、20.0N 和 30.0N 的高分辨率Ni 2p XPS 光谱。b0.0N、20.0N 和 30.0N的基于同步加速器的S L-edge XANES。c NiPS3 UNS 和 20.0N 的 Ni L2,3-edge EELS 光谱。d CdS(200)晶面和e NiPS3(002)晶面沿z轴方向的平均电位分布。f NiPS3/CdS系统的微分电荷密度图。金色和青色等值面分别表示净电子积累和耗尽区域。考虑到在 17 vol% 三乙醇胺水溶液中的溶剂化效应,计算了功函数和微分电荷密度图。
图 4. NiPS3/CdS体系的光催化产氢活性和载流子动力学。a 在~17.0 vol% 三乙醇胺水溶液中使用可见光照射(λ 400 nm)的0.0N、5.0N、10.0N、20.0N、30.0N 和 NiPS3UNSs 的光催化产氢速率。0.0N 和 20.0N 的b稳态和 c 瞬态 PL 光谱。c 插图显示了 0.0N 和20.0N 的拟合电荷寿命。用 400 nm 激光脉冲激发后,乙醇溶液中 d 0.0N 和 e 20.0N 的二维伪彩色 TA 光谱。f 0.0N 和 g 20.0N 在不同泵-探针延迟时间下的 TA 光谱。h 0.0N 和 20.0N 的归一化衰减动力学和拟合线,基于约 516 和约 514 nm 处的GSB 峰。i 0.0N 和 20.0N 的归一化衰减动力学和拟合线,基于 ~480 和 ~474nm 处的ESA 峰。
图 5. NiPS3/CdS 系统中的电荷载流子动力学。0.0N 和 20.0N 的a瞬态和 b 稳态 SPV 光谱。c 在黑暗和光照下进行的 0.0N 的 CPD 测试。NiPS3UNSs 的高分辨率 d Ni 2p、e P 2p 和 f S 2p XPS 光谱,分别在光照打开和关闭的情况下测量。20.0N的高分辨率g Ni 2p、h Cd 3d 和 i S 2p XPS光谱,分别在光照打开和关闭的情况下测量。
图 6. NiPS3/CdS体系的表面催化反应和光吸收。a 0.1 M KOH 水溶液中,0.0N、20.0N、NiPS3UNSs 和 20 wt% Pt/C 的电化学 HER 活性。b NiPS3/CdS 的俯视原子结构,显示了 Ni、P 和 S 位点。c 在 NiPS3/CdS 体系中的NiPS3 基面的 Ni、P 和 S 位点上,遵循 Volmer-Heyrovsky 路径计算的 HER 自由能图。d 在NiPS3/CdS体系中的NiPS3 基面的Ni、P和S位点上,遵循 Volmer-Tafel途径计算的HER自由能图。e 0.0N、5.0N、10.0N、20.0N 和 30.0N 的 UV-Vis 漫反射光谱。f 分别在氙灯照射 (λ 400 nm) 和630-nm LED 下,在约 17.0 vol% 三乙醇胺水溶液中测量 20.0N 的光催化产氢速率。考虑到 17 vol% 三乙醇胺水溶液中的溶剂化效应,进行了所有的Gibbs 自由能计算。
图 7. NiPS3/CdS体系中的光催化产氢机理示意图。在NiPS3/CdS体系中,可见光激发(λ 400 nm)、光生电子和空穴的分离/迁移、以及表面催化反应的示意图。
总结与展望
基于上述结果,本文首次报道了一种简便的液体剥离技术,来合成具有超薄厚度(~3.16 nm)的2D NiPS3。合成后的 NiPS3 UNS 可作为通用平台,用于提高各种光催化剂(包括TiO2, CdS, In2ZnS4 和 C3N4)的光驱动产氢性能。与原始 CdS相比,所制备的 NiPS3/CdS 复合物显示出最高的光催化产氢 (H2) 活性(13,600 μmol h-1 g-1),最大增强因子约为 1667%。NiPS3/CdS 的性能大幅提升有两个原因:(1)NiPS3 UNS 和 CdS NPs 之间的电子耦合界面明显促进了电荷载流子的分离/传输。特别是,光生空穴向 CdS NPs 表面的传输显著增强,这是由牺牲电子供体三乙醇胺收集的。因此,CdS NPs 上剩余的光生电子可以有效地迁移到 NiPS3 UNSs 以产生 H2;(2) 在NiPS3 UNSs中,大量的原子级P/S边缘位点和活化的S位点极大地促进了H2的析出反应。这些发现得到了理论计算和高级表征的支持,例如原子分辨率 AC-STEM、瞬态 PL 光谱、瞬态SPV 光谱、超快 TAS 和原位 XPS。该研究不仅展示了 MPCx 家族作为一个通用平台的巨大潜力,可用于极大地提高各种半导体光催化剂的光催化产氢活性,更重要的是,通过了解光催化中的原子级结构/组成-活性相关性和电子-空穴动力学/热力学,实现了光催化剂的合理设计/制备。
工业上有哪些方法可以产生氢气?
工厂生产方法有:
1、电解水制氢.
水电解制氢是目前应用较广且比较成熟的方法之一。水为原料制氢过程是氢与氧燃烧生成水的逆过程,因此只要提供一定形式一定能量,则可使水分解。提供电能使水分解制得氢气的效率一般在75-85%,其工艺过程简单,无污染,但消耗电量大,因此其应用受到一定的限制。利用电网峰谷差电解水制氢,作为一种贮能手段也具有特点。我国水力资源丰富,利用水电发电,电解水制氢有其发展前景。太阳能取之不尽,其中利用光电制氢的方法即称为太阳能氢能系统,国外已进行实验性研究。随着太阳电池转换能量效率的提高,成本的降低及使用寿命的延长,其用于制氢的前景不可估量。同时,太阳能、风能及海洋能等也可通过电制得氢气并用氢作为中间载能体来调节,贮存转化能量,使得对用户的能量供应更为灵活方便。供电系统在低谷时富余电能也可用于电解水制氢,达到储能的目的。我国各种规模的水电解制氢装置数以百计,但均为小型电解制氢设备,其目的均为制提氢气作料而非作为能源。随着氢能应用的逐步扩大,水电解制氢方法必将得到发展。
2、矿物燃料制氢
以煤、石油及天然气为原料制取氢气是当今制取氢气是主要的方法。该方法在我国都具有成熟的工艺,并建有工业生产装置。
(1)煤为原料制取氢气
在我国能源结构中,在今后相当长一段时间内,煤炭还将是主要能源。如何提高煤的利用效率及减少对环境的污染是需不断研究的课题,将煤炭转化为氢是其途径之一。
以煤为原料制取含氢气体的方法主要有两种:一是煤的焦化(或称高温干馏),二是煤的气化。焦化是指煤在隔绝空气条件下,在90-1000℃制取焦碳副产品为焦炉煤气。焦炉煤气组成中含氢气55-60%(体积)甲烷23-27%、一氧化碳6-8%等。每吨煤可得煤气300-350m3,可作为城市煤气,亦是制取氢气的原料。煤的气化是指煤在高温常压或加压下,与气化剂反应转化成气体产物。气化剂为水蒸汽或氧所(空气),气体产物中含有氢有等组份,其含量随不同气化方法而异。我国有大批中小型合成氢厂,均以煤为原料,气化后制得含氢煤气作为合成氨的原料。这是一种具有我国特点的取得氢源方法。采用OGI固定床式气化炉,可间歇操作生产制得水煤气。该装置投资小,操作容易,其气体产物组成主要是氢及一氧化碳,其中氢气可达60%以上,经转化后可制得纯氢。采用煤气化制氢方法,其设备费占投资主要部分。煤地下气化方法近数十年已为人们所重视。地下气化技术具有煤 资源利用率高及减少或避免地表环境破坏等优点。中国矿业大学余力等开发并完善了"长通道、大断 面、两阶段地下煤气化"生产水煤气的新工艺,煤气中氢气含量达50%以上,在唐山刘庄已进行工业性试运转,可日产水煤气5万m3,如再经转化及变压吸附法提纯可制得廉价氢气,该法在我国具有一定开发前景.我国对煤制氢技术的掌握已有良好的基础,特别是大批中小型合成氨厂的制氢装置遍布各地,为今后提供氢源创造了条件。我国自行开发的地下煤气化制水煤气获得廉价氢气的工艺已取得 阶段成果,具有开发前景,值得重视。
(2)以天然气或轻质油为原料制取氢气
该法是在催化剂存在下与水蒸汽反应转化制得氢气。主要发生下述反应:
CH4+H2O→CO+H2
CO+H2O→COZ+HZ
CnH2h+2+Nh2O→nCO+(Zh+l)HZ
反应在800-820℃下进行。从上述反应可知,也有部分氢气来自水蒸汽。用该法制得的气体组成中,氢气含量可达74%(体积),其生产成本主要取决于原料价格,我国轻质油价格高,制气成本贵,采用受到限制。大多数大型合成氨合成甲醇工厂均采用天然气为原料,催化水蒸汽转化制氢的工艺。我国在该领域进行了大量有成效的研究工作,并建有大批工业生产装置。我国曾开发采用间歇式天然气蒸汽转化制氢工艺,制取小型合成氨厂的原料,这种方法不必用采高温合金转化炉,装置投资成本低。以石油及天然气为原料制氢的工艺已十分成熟,但因受原料的限制目前主要用于制取化工原料。
(3)以重油为原料部分氧化法制取氢气
重油原料包括有常压、减压渣油及石油深度加工后的燃料油,重油与水蒸汽及氧气反应制得含氢
气体产物。部分重油燃烧提供转化吸热反应所需热量及一定的反应温度。该法生产的氢气产物成本
中,原料费约占三分之一,而重油价格较低,故为人们重视。我国建有大型重油部分氧化法制氢装置,用于制取合成氢的原料。
如果无贵重金属燃料电池问世,会带来哪些好处?
如果无贵重金属燃料电池问世,就不会出现易爆的现象。不少的年轻人在手机充电的时候很喜欢边充边玩,这也可能会导致手机出现爆炸的现象。有了无贵重金属燃料电池之后,就会加强电池里面的氢燃料。这种燃料对电池本身是有着很好的保护的,不像传统的电池一样。电池不能够出现泄漏的现象,而这一点就做到了很好的预防。有了这样的电池,不用担心自己打游戏的时候发生爆炸。
这种电池的成本相对来讲比较高一些,而且里面的化学成分也是不一样的。如果把这种电池装在电动车里面的话,也会跑得非常的快。虽然在骑电动车的时候不到两天电池就没有电了,这也是因为里面的一些技术不到位。这个电池就能够把化学能转变为热能,会让自己很多天都可以不充电。燃料是十分便宜的,而且也不需要有昂贵的费用。
比如自己会经常把电池用完扔掉,而这个电池就和其他电池不一样。它会把这些旧电池利用起来,把那些电流流入到自己本来的体积当中。可以重新生长出新的电流,而且还会进行储藏化学功能。那些电动汽车用的都是这种电池,跑起来也是有很大的装备的。这种科技会给整个城市带来充足的电力,再不用担心开半截就没有电了。
总的来说这种电池问世可以给人带来很大的实用性,也还让人特别的开心。这种电池还可以把污水转化为电既能够保证城市的卫生,还能够保护大家所生活的环境。这种电池未来的发展是一片光明的,而且还有很好的前景。有的电池使用的时候用着用着就膨胀,也是因为没有做好一定的技术处理。自己没事的时候可以多关注一下这方面,看一看里面融入了哪些新科技。
化学!!!氢气的制造方法
一、电解水制氢
多采用铁为阴极面,镍为阳极面的串联电解槽(外形似压滤机)来电解苛性钾或苛性钠的水溶液。阳极出氧气,阴极出氢气。该方法成本较高,但产品纯度大,可直接生产99.7%以上纯度的氢气。这种纯度的氢气常供:①电子、仪器、仪表工业中用的还原剂、保护气和对坡莫合金的热处理等,②粉末冶金工业中制钨、钼、硬质合金等用的还原剂,③制取多晶硅、锗等半导体原材料,④油脂氢化,⑤双氢内冷发电机中的冷却气等。像北京电子管厂和科学院气体厂就用水电解法制氢。
二、水煤气法制氢
用无烟煤或焦炭为原料与水蒸气在高温时反应而得水煤气(C+H2O→CO+H2—热)。净化后再使它与水蒸气一起通过触媒令其中的CO转化成CO2(CO+H2O→CO2+H2)可得含氢量在80%以上的气体,再压入水中以溶去CO2,再通过含氨蚁酸亚铜(或含氨乙酸亚铜)溶液中除去残存的CO而得较纯氢气,这种方法制氢成本较低产量很大,设备较多,在合成氨厂多用此法。有的还把CO与H2合成甲醇,还有少数地方用80%氢的不太纯的气体供人造液体燃料用。像北京化工实验厂和许多地方的小氮肥厂多用此法。
三、由石油热裂的合成气和天然气制氢
石油热裂副产的氢气产量很大,常用于汽油加氢,石油化工和化肥厂所需的氢气,这种制氢方法在世界上很多国家都采用,在我国的石油化工基地如在庆化肥厂,渤海油田的石油化工基地等都用这方法制氢气
也在有些地方采用(如美国的Bay、way和Batan Rougo加氢工厂等)。
四、焦炉煤气冷冻制氢
把经初步提净的焦炉气冷冻加压,使其他气体液化而剩下氢气。此法在少数地方采用(如前苏联的Ke Mepobo工厂)。
五、电解食盐水的副产氢
在氯碱工业中副产多量较纯氢气,除供合成盐酸外还有剩余,也可经提纯生产普氢或纯氢。像化工二厂用的氢气就是电解盐水的副产。
六、酿造工业副产
用玉米发酵丙酮、丁醇时,发酵罐的废气中有1/3以上的氢气,经多次提纯后可生产普氢(97%以上),把普氢通过用液氮冷却到—100℃以下的硅胶列管中则进一步除去杂质(如少量N2)可制取纯氢(99.99%以上),像北京酿酒厂就生产这种副产氢,用来烧制石英制品和供外单位用。
七、铁与水蒸气反应制氢
但品质较差,此系较陈旧的方法现已基本淘汰。
很多种办法,简单地说,一种单质+一种化合物=一种化合物+一种单质。什么单质都可以,只要不与氢气发生反应既可。而化合物,只需含有氢即可,例如双氧水。
推荐:可以用高锰酸钾加二氧化锰加热制取氢气,且得到的气体纯度更高。
近年来,各国科学家研究出一些制取氢的新方法,我国科学家也试验出一些制取氢的新方法,现在把这些新方法的一部分介绍如下:
一.用氧化亚铜做催化剂从水中制氢气
通常,用电解水生产氢的方法比较昂贵。过去,也曾有人研究过用氧化亚铜催化剂从水中制取氢的方法,但在实验中氧化亚铜在阳光的作用下很容易还原成金属。日本研究人员发现,将氧化亚铜制成粉末,可以避免发生这个问题。他们的具体方法是,将0.5克氧化亚铜粉末添加入200立方厘米的蒸馏水中,然后用一盏玻璃灯泡中发出的460纳米~650纳米的可见光进行照射,在氧化亚铜催化剂的作用下,水分解成氢和氧。日本的研究人员利用这项技术共进行了30次实验,从分解的水中得到了不同比例的氢和氧。试验中发现,如果得到的氧的压力增加到500帕斯卡,水的分解过程就减慢。氧化亚铜粉末的使用寿命可达1900小时之久。东京技术研究所计划进一步研究如何提高氢的产生效率,同时研制能够在波长更长的可见光照射下发挥活性的催化剂,该研究所正在试验一种新的含铜铁合金的氧化物。
二、用新型的钼的化合物从水中制氢气
西班牙瓦伦西亚大学的两位科学家发明了一种低成本的从水中制取氢的方法。他们对催化转化器进行改造,使水分解时仅需很少的成本。他们用一种从钼中获取的化学产品做催化剂,而不使用电能。他们说,如果用氢作原料,从半升水中制得的氢足以使一辆小汽车行驶633公里。
三、用光催化剂反应和超声波照射把水完全分解的方法
60年代末,日本两位科学家发现二氧化钛经光(紫外线)照射可分解水的现象。他们本拟应用这一方法制氢,但由于氢和氧的生成量较少,在经济上不合算而中断了这一研究。最近,据《日本工业新闻》报道,日本明星大学元田久志教授等人同时使用光催化剂反应和超声波照射的方法把水完全分解。这种“超声波光催化剂反应”所以能使水完全分解,是由于在超声波的作用下,水可被分解为氢和双氧水,而双氧水经光催化反应又可分解成氧和氢。不过超声波照射和二氧化钛光催化剂虽然获得了完全分解水的结果,但氧的生成量却较少。在添加二氧化锰后,再用超声波照射,二氧化锰分解后的锰离子可溶解到溶液中,使双氧水产生大量的氧。
四、陶瓷跟水反应制取氢气
日本东京工业大学的科学家在300 ℃下,使陶瓷跟水反应制得了氢。他们在氩和氮的气流中,将炭的镍铁氧体(CNF)加热到300 ℃,然后用注射针头向CNF上注水,使水跟热的CNF接触,就制得氢。由于在水分解后CNF又回到了非活性状态,因而铁氧体能反复使用。在每一次反应中,平均每克CNF能产生2立方厘米~3立方厘米的氢气。
五、甲烷制氢气
1.日本京都大学教授乾智行用镍铂稀土元素氧化物多孔催化剂,使甲烷、二氧化碳和水生成了氢气。催化剂中镍、稀土元素氧化物和铂的组成比例为10:65:0.5。其制备过程是,先将镍、稀土元素氧化物等原料加热熔解,然后导入氨气,使熔解物成为凝胶状,再进行干燥、热处理。这种催化剂微粒孔径为2纳米~100纳米,具有很高的催化活性。乾智行教授将该催化剂装进反应塔,然后加入二氧化碳、甲烷和水蒸气。结果,在常压及550 ℃~600 ℃条件下,生成物为氢气和一氧化碳,升温至650 ℃,其转化率为80%;温度为700 ℃时,转化率几乎达到100%。
2.用C60作催化剂从甲烷制氢气
日本工业技术院物质工学工业技术研究所用C60作催化剂,从甲烷制得氢气。
在现阶段,C60在高温条件下才能发挥功能,不能立刻达到实用,必须加以改良,制成在低温条件下也能工作的节能催化剂。他们开发的催化剂,是在碳粉里掺10%的C60。在加热到1000 ℃的容器里,放入0.1克催化剂,以1分钟流入20毫升甲烷的速度作实验,结果90%的甲烷分解成氢和碳。C60用作催化剂,可用水洗净表面,除去附着的残存碳素,理论上可半永久使用。由于形状独特,粒子表面面积为活性炭的5倍到10倍,因而作催化剂用时功能较强。
六、从微生物中提取的酶制氢气
1.葡萄糖脱氧酶。美国橡树岑国家实验室从热原体乳酸菌中提取葡萄糖脱氧酶。热原体乳酸菌首先是在美国矿井中的低温干馏煤渣中发现的。葡萄糖脱氧酶在磷酸烟酰胺腺嘌呤二核苷酸(NADP)的帮助下,能从葡萄糖中提取氢。在制取氢的过程中,NADP从葡萄糖中剥取一个氢原子,使剩余物质变成氢原子溶液。
2.氢化酶。这种酶是从曾在海底火山口附近发现的一种微生物中提取的。氢化酶的作用是使NADP携载的氢原子结合成氢分子,而NADP还原为它原来的状态继续再次被利用。除美国发现这种酶外,俄罗斯的科学家也在湖沼里发现了这种微生物。他们把这种微生物放在适合于它生存的特殊器皿里,然后将微生物产出的氢气收集在氢气瓶里。
七、从细菌制取氢气
1.许多原始的低等生物在其新陈代谢的过程中也可放出氢气。例如,许多细菌可在一定条件下放出氢气。日本已发现一种名为“红极毛杆菌”的细菌,就是制氢的能手。在玻璃器皿里,以淀粉作原料,掺入一些其他营养素制成培养液,就可以培养出这种细菌。每消耗5毫米淀粉营养液,就可以产生出25毫升的氢气。
2.美国宇航部门准备把一种光合细菌—红螺菌带到太空去,用它放出的氢气作为能源供航天器使用。
八、用绿藻生产氢气
科学家们已发现一种新方法,使绿藻按要求生产氢气。美国伯克利加州大学科学家说,绿藻属于人类已知的最古老植物之一,通过进化形成了能生活在两个截然不同的环境中的本领。当绿藻生活在平常的空气和阳光中时,它像其他植物一样具有光合作用。光合作用利用阳光,水和二氧化碳生成氧气和植物维持生命所需要的化学物质。然而当绿藻缺少硫这种关键性的营养成分,并且被置于无氧环境中时,绿藻就会回到另一种生存方式中以便存活下来,在这种情况下,绿藻就会产生氢气。科学家介绍,1升绿藻培养液每小时可以产生出3毫升氢气,但研究人员认为,绿藻生产氢气的效率至少可以提高100倍。
九、有机废水发酵法生物制氢气
最近,以厌氧活性溶液为生产原料的“有机废水发酵法生物制氢技术”在我国哈尔滨建筑大学通过中试研究验证。我国工程院院士李圭白教授介绍,该项研究在国内外首创并实现了中试规模连续非固定化菌种长期持续生物制氢技术,是生物制氢领域的一项重大突破,其成果处国际领先地位。生物制氢思路1966年提出,90年代受到空前重视。从90年代开始,德、日、美等一些发达国家成立了专门机构,制定了生物制氢发展计划,以期通过对生物制氢技术的基础性和应用性研究,在21世纪中叶实现工业化生产。但时至今日,研究进程并不理想,许多研究还都集中在细菌和酶固定化技术上,离工业化生产还有很大差距,迄今尚无一例中试结果。哈尔滨建筑大学的教授突破了生物制氢技术必须采用纯菌种和固定技术的局限,开创了利用非固定化菌种生产氢气的新途径,并首次实现了中试规模连续流长期持续产氢。在此基础上,他们又先后发现了产氢能力很高的乙醇发酵类型,发明了连续流生物制氢技术反应器,初步建立了生物产氢发酵理论,提出了最佳工程控制对策。该项技术和理论成果在中试研究中得到了充分验证:氢气产率比国外同类的小试研究高几十倍;开发的工业化生物制氢系统工艺运行稳定可靠,且生产成本明显低于目前广泛采用的水电解法。
单原子催化在催化上究竟是昙花一现还是发展新趋势?
近年来,单原子催化(Single-Atom Catalysis)研究发展迅速。近日,化学工程新闻(Chemical Engineering News,CEN)发表“催化走向原子极限——化学家将单原子催化剂从异想天开发展为现实”(Taking catalysis to the atomic limit—Chemists advance single-atom supported catalysts from farfetched idea to reality)对其进行专题评述。这是五年来CEN对单原子催化研究的第四次专题评述,前三次是对单项研究工作的评论,此次为对近几年单原子催化发展状况的综合评述。“单原子催化”概念由大连化物所张涛院士研究组于五年前在国际上首次提出(Nat. Chem. 2011,3(8),634-641),并先后受到CEN(Single Atoms Mediate Reaction)与Nature China(Catalysis:no really, it’s fine)的亮点评述,该代表性论文5年被引用近400次,Nature Chemistry 2011年以来非综述类文章引用总排名第8位。该评述文章详细论述了单原子催化概念的起源、发展及前景。如评论文章所述:五年前,固体表面的单个原子可以进行催化对于很多科学家而言是很奇特的想法。以张涛研究组为代表的少数几个研究组在这一领域进行了探索,发现单原子催化剂不仅可以进行催化,而且与传统催化剂相比具有很多优势。在此基础上,国际研究纷纷跟进,单原子催化研究得到迅速发展。单原子催化的快速发展使剑桥大学John Meurig Thomas爵士认为单原子催化应用“未来看起来很光明”。2016年夏天,张涛、清华大学李隽教授和亚利桑那州立大学刘景月教授共同主办了首届“单原子催化国际研讨会”,吸引了近十个国家300余位专家学者参会,充分显示了单原子催化的受关注程度。该评述文章结尾很好地展现了单原子催化研究的神奇发展过程:“仅仅几年前,负载型催化剂能够通过单个原子的活动起作用的想法听上去牵强附会、遥不可及,但现在研究人员已经开始讨论大批量生产单原子催化剂的可行性。几年的变化多大啊!”美国化学会化学工程新闻(Chemical Engineering News,CEN)评选出了2016年度化学化工领域“十大科研成果”。大连化物所张涛院士团队在国际上首次提出的“单原子催化”入选其中,这也是今年唯一入选该榜单的中国科学家的研究成果。张涛团队于2011年首次合成了单原子铂催化剂Pt1/FeOx (Nat.Chem.,2011,3(8),634-641),发现单原子催化剂在CO氧化反应中表现出优异的催化性能,并在此基础上提出了“单原子催化”概念(Acc.Chem.Res.,2013,46(8),1740-1748)。之后的几年中,该团队进一步拓展了单原子催化剂的种类及催化反应,包括将单原子催化剂用于水煤气变换反应(J.Am.Chem.Soc.,2013,135(41),15314-15317),开拓了单原子/准单原子催化剂在芳香硝基化合物选择加氢反应中的应用(Nat.Commun.,2014,5,5634;Chem.Sci.,2016,7,5758-5764)和在烯烃氢甲酰化反应中的应用(Angew. Chem. Int. Ed.,2016,55,16054-16058)。与此同时,国际研究纷纷跟进,单原子催化研究得到迅速发展,在短短几年内便迅速成为多相催化领域的研究热点。2016年夏天,该研究组与清华大学、美国亚利桑那州立大学共同主办了国际上首届“单原子催化国际研讨会”,该会议也是第十六届“国际催化大会”的会前会之一,吸引了近十个国家300余位专家学者参会,充分显示了单原子催化的受关注程度,也进一步推动了“单原子催化”概念的发展。
发布于 2022-10-12 07:35:57 回复
发布于 2022-10-12 06:22:35 回复
发布于 2022-10-12 06:06:15 回复