本文目录一览:
- 1、激光打标机有哪些系统组成?
- 2、激光打标的发展历程
- 3、激光打标工作原理是怎样的?
- 4、激光打标机原理
激光打标机有哪些系统组成?
1、激光电源
光纤激光打标机激光电源是为光纤激光器提供动力的装置,其输入电压为AC220V的交流电。安装于打标机控制盒内。
2、光纤激光器
光纤激光打标机采用进口脉冲式光纤激光器,其输出激光模式好使用寿命长,被设计安装于打标机机壳内。
3、振镜扫描系统
振镜扫描系统是由光学扫描器和伺服控制二部分组成。整个系统采用新技术、新材料、新工艺、新工作原理设计和制造。
光学扫描器采用动磁式偏转工作方式的伺服电机。具有扫描角度大、峰值力矩大、负载惯量大、机电时间常数小、工作速度快、稳定可靠等优点。精密轴承消隙机构提供了超底轴向和径向跳动误差;“电子扭力棒”取代传统弹性材料扭力棒,大大提高了使用寿命和长期工作的可靠性;任意位置零功率保持工作原理既降低了使用功耗,又减少了器件的发热效应,省却了恒温装置;先进的高稳定性精密位置检测传感技术提供高线性度、高分辨率、高重复性、低漂移的性能。
光学扫描器分为X方向扫描系统和Y方向扫描系统,每个伺服电机轴上固定着激光反射镜片。每个伺服电机分别由计算机发出数字信号控制其扫描轨迹。
4、聚焦系统
聚焦系统的作用是将平行的激光束聚焦于一点。主要采用f-θ透镜,不同的f-θ透镜的焦距不同,打标效果和范围也不一样,光纤激光打标机选用进口高性能聚焦系统,其标准配置的透镜焦距f=160mm,有效扫描范围Φ110mm。用户可根据需要选配型号的透镜。
可选配的F-θ透镜有:
f=100mm,有效聚焦范围Φ65mm。
f=160mm,有效聚焦范围Φ110mm。
5、计算机控制系统
计算机控制系统是整个激光打标机控制和指挥的中心,同时也是软件安装的载体。通过对声光调制系统、振镜扫描系统的协调控制完成对工件打标处理。
光纤激光打标机的计算机控制系统主要包括机箱、主板、CPU、硬盘、内存条、D/A卡、软驱、显示器、键盘、鼠标等。
激光打标的发展历程
激光打标设备的核心是激光打标控制系统,因此,激光打标的发展历程就是打标控制系统的发展过程。从1995年到2003年短短的8年时间,控制系统在激光打标领域就经历了大幅面时代、转镜时代和振镜时代,控制方式也完成了从软件直接控制到上下位机控制到实时处理、分时复用的一系列演变,如今,半导体激光器、光纤激光器、乃至紫外激光的出现和发展又对光学过程控制提出了新的挑战。 扫描式打标系统由计算机、激光器和X-Y扫描机构三部分组成,其工作原理是将需要打标的信息输入计算机,计算机按照事先设计好的程序控制激光器和X-Y扫描机构,使经过特殊光学系统变换的高能量激光点在被加工表面上扫描运动,形成标记。
通常X-Y扫描机构有两种结构形式:一种是机械扫描式,另一种是振镜扫描式。
(1) 机械扫描式
机械扫描式打标系统不是采用通过改变反射镜的旋转角度去移动光束,而是通过机械的方法对反射镜进行X-Y坐标的平移,从而改变激光束到达工件的位置,这种打标系统的X-Y扫描机构通常是用绘图仪改装。其工作过程:激光束经过反光镜①、②转折光路后,再经过光笔(聚焦透镜)③作用射到被加工工件上。其中绘图仪笔臂④只能带着反光镜①和②沿X轴方向来回运动;光笔③连同它上端的反光镜②(两者固定在一起)只能沿Y轴方向运动。在计算机的控制下(一般通过并口输出控制信号),光笔在Y方向上的运动与笔臂 在X方向上的运动合成,可使输出激光到达平面内任意点,从而标刻出任意图形和文字。
(2)振镜扫描式
振镜扫描式打标系统主要由激光器、XY偏转镜、聚焦透镜、计算机等构成。其工作原理是将激光束入射到两反射镜(振镜)上,用计算机控制反射镜的反射角度,这两个反射镜可分别沿X、Y轴扫描,从而达到激光束的偏转,使具有一定功率密度的激光聚焦点在打标材料上按所需的要求运动,从而在材料表面上留下永久的标记,聚焦的光斑可以是圆形或矩形。
在振镜打标系统中,可以采用矢量图形及文字,这种方法采用了计算机中图形软件对图形的处理方式,具有作图效率高,图形精度好,无失真等特点,极大的提高了激光打标的质量和速度。同时振镜式打标也可采用点阵式打标方式,采用这种方式对于在线打标很适用,根据于不同速度的生产线可以采用一个扫描振镜或两个扫描振镜,与前面所述的阵列式打标相比,可以标记更多的点阵信息,对于标记汉字字符具有更大的优。
振镜扫描式打标系统一般使用连续光泵工作波长为1.06μm的Nd:YAG激光器,输出功率为10~120W,激光输出可以是连续的,也可以是Q开关调制的。发展的射频激励CO2激光器,也被用于振镜扫描式激光打标机。
振镜扫描式打标因其应用范围广,可进行矢量打标和点阵打标,标记范围可调,而且具有响应速度快、打标速度高(每秒钟可打标几百个字符)、打标质量较高、光路密封性能好、对环境适应性强等优势已成为主流产品,并被认为代表了未来激光打标机的发展方向,具有广阔的应用前景。
用于打标的激光器主要有Nd:YAG激光器和CO2激光器。Nd:YAG激光器产生的激光能被金属和绝大多数塑料很好地吸收,而且其波长短(为1.06μm),聚焦的光斑小,因而最适合在金属等材料上进行高清晰度的标记。CO2激光器产生的激光波长为10.6μm,木制品、玻璃、聚合物和多数透明材料对其有很好的吸收效果,因而特别适合在非金属表面上进行标记。
Nd:YAG激光器和CO2激光器的缺点是对材料的热损伤及热扩散比较严重,产生的热边效应常会使标记模糊。相比之下,由准分子激光器产生的紫外光打标时,不加热物质,只蒸发物质的表面,在表面组织产生光化学效应,而在物质表层留下标记。所以,用准分子激光打标时,标记边缘十分清晰。由于材料对紫外光的吸收大,激光对材料的作用只发生在材料的最表层,对材料几乎没有烧损现象,因此准分子激光器更适合于材料的标记。
激光打标工作原理是怎样的?
激光打标的基本原理是,由激光发生器生成高能量的连续激光光束,聚焦后的激光作用于承印材料,使表面材料瞬间熔融,甚至气化,通过控制激光在材料表面的路径,从而形成需要的图文标记。
激光打标的特点是非接触加工,可在任何异型表面标刻,工件不会变形和产生内应力,适于金属、塑料、玻璃、陶瓷、木材、皮革等材料的标记。
激光几乎可对所有零件(如活塞、活塞环、气门、阀座、五金工具、卫生洁具、电子元器件等)行打标,且标记耐磨,生产工艺易实现自动化,被标记部件变形小。
聚焦后的极细的激光光束如同刀具,可将物体表面材料逐点去除,其先进性在于标记过程为非接触性加工,不产生机械挤压或机械应力,因此不会损坏被加工物品;由于激光聚焦后的尺寸很小,热影响区域小,加工精细,因此,可以完成一些常规方法无法实现的工艺。
激光加工使用的"刀具"是聚焦后的光点,不需要额外增添其它设备和材料,只要激光器能正常工作,就可以长时间连续加工。激光加工速度快,成本低廉。激光加工由计算机自动控制,生产时不需人为干预。
激光打标机原理
激光打标机是用激光束在各种不同的物质表面打上永久的标记。打标的效应是通过表层物质的蒸发露出深层物质,从而刻出精美的图案、商标和文字,激光打标机主要分为,CO2激光打标机,半导体激光打标机、光纤激光打标机和YAG激光打标机,激光打标机主要应用于一些要求更精细、精度更高的场合。应用于电子元器件、集成电路(IC)、电工电器、手机通讯、五金制品、工具配件、精密器械、眼镜钟表、首饰饰品、汽车配件、塑胶按键、建材、PVC管材。
基本原理
激光打标是用激光束在各种不同的物质表面打上永久的标记。打标的效应是通过表层物质的蒸发露出深层物质,或者是通过光能导致表层物质的化学物理变化而"刻"出痕迹,或者是通过光能烧掉部分物质,显出所需刻蚀的图案、文字。
组成结构
激光电源
光纤激光打标机激光电源是为光纤激光器提供动力的装置,其输入电压为AC220V的交流电。安装于打标机控制盒内。
光纤激光器
光纤激光打标机采用进口脉冲式光纤激光器,其输出激光模式好使用寿命长,被设计安装于打标机机壳内。
振镜扫描系统
振镜扫描系统是由光学扫描器和伺服控制二部分组成。整个系统采用新技术、新材料、新工艺、新工作原理设计和制造。
光学扫描器采用动磁式偏转工作方式的伺服电机。具有扫描角度大、峰值力矩大、负载惯量大、机电时间常数小、工作速度快、稳定可靠等优点。精密轴承消隙机构提供了超底轴向和径向跳动误差;“电子扭力棒”取代传统弹性材料扭力棒,大大提高了使用寿命和长期工作的可靠性;任意位置零功率保持工作原理既降低了使用功耗,又减少了器件的发热效应,省却了恒温装置;先进的高稳定性精密位置检测传感技术提供高线性度、高分辨率、高重复性、低漂移的性能。
光学扫描器分为X方向扫描系统和Y方向扫描系统,每个伺服电机轴上固定着激光反射镜片。每个伺服电机分别由计算机发出数字信号控制其扫描轨迹。
聚焦系统
聚焦系统的作用是将平行的激光束聚焦于一点。主要采用f-θ透镜,不同的f-θ透镜的焦距不同,打标效果和范围也不一样,光纤激光打标机选用进口高性能聚焦系统,其标准配置的透镜焦距f=160mm,有效扫描范围Φ110mm。用户可根据需要选配型号的透镜。
可选配的F-θ透镜有:
f=100mm,有效聚焦范围Φ65mm。
f=160mm,有效聚焦范围Φ110mm。
计算机控制系统
计算机控制系统是整个激光打标机控制和指挥的中心,同时也是软件安装的载体。通过对声光调制系统、振镜扫描系统的协调控制完成对工件打标处理。
光纤激光打标机的计算机控制系统主要包括机箱、主板、CPU、硬盘、内存条、D/A卡、软驱、显示器、键盘、鼠标等。
发布于 2022-09-16 05:41:34 回复
发布于 2022-09-16 06:42:37 回复
发布于 2022-09-16 12:46:44 回复