贵金属络合物液相分离-分离混合液中的铜离子和铁离子

本文目录一览:

一个实验设计“Rh的定量分析方法及其性质”找了好久都没找到,求助!(最好有文献和详细的测定方法)谢谢

对二乙氨基苯基亚甲基若丹宁柱前衍生-高效液相色谱法测定汽车尾气催化剂中的铂、钯、铑的研究

李维莉1* ,马银海1,彭永芳1,胡秋芬1,2,尹家元2

(1昆明师范专科学校化学系,昆明650031;2 云南大学化学系,昆明 650091)

摘要 研究了用对二乙氨基苯基亚甲基若丹宁(DEABR) 为柱前衍生试剂,以安捷伦ZORBAX Stable Bound (4.6×50 mm, 1.8 mm) 快速分离柱为固定相,85%的甲醇(内含0.5%的醋酸)为流动相,高效液相色谱分离,二极管矩阵检测器检测测定铂、钯、铑的的方法,三种贵金属元素的络合物在2.0 min内可达到基线分离。根据信噪比(S/N=3)得各金属离子的检出限分别为:铂1.2 mg/L,钯1.0 mg/L,铑1.0 mg/L,方法用于汽车尾气催化剂中痕量铂、钯、铑的测定,相对标准偏差在1.2~2.1%之间, 加标回收率在94~105%之间,结果令人满意。

关键词 高效液相色谱,对二乙氨基苯基亚甲基若丹宁 (DEABR),铂、钯、铑

1. 引 言

铂、钯、铑是汽车尾气催化剂中的活性元素。由于铂族金属价格昂贵且资源贫乏,必须进行再生回收。其回收利用价值又在很大程度上取决于样品中铂、钯、铑的准确测定 [1,2]。但是贵金属元素性质相似,在样品中容易共生且含量很低,常规方法测定时样品前处理很复杂且误差大。近几年来高效液相色谱法在无机分析中的应用研究取得了迅速发展,痕量金属离子与有机试剂形成稳定的有色络合物,用高效液相色谱分离,紫外-可见光度检测器测定金属离子,克服了光度分析选择性差的缺点,可实现多元素同时测定,方法简便快速 [3-6]。若丹宁类试剂在光度分析中得到了广泛应用,但是用于无机元素的高效液相色谱测定报道较少。我们研究了用对二乙氨基苯基亚甲基若丹宁 (DEABR)为柱前衍生试剂,ZORBAX Stable Bound (4.6×50 mm, 1.8 mm)快速分离柱为固定相分离铂、钯、铑的络合物,并结合微波消化样品和二极管矩阵检测器检测建立了一种高效液相色谱测定铂、钯、铑的方法。该方法中3种元素络合物的分离只需2.0 min,和常规高效液相色谱法相比,大大缩短了分析时间。

2 实验部分

2.1主要仪器和试剂

美国Waters高效液相色谱仪,包括2690 Alliance分离系统(四元泵及自动进样器),996 (PAD)紫外二极管矩阵检测器,Millennium32色谱管理软件;美国CEM公司MWD-2型微波通用消解装置,配50 mL聚四氟乙烯消化罐。

铂、钯、铑标准储备液,1.0 mg/mL,购于国家标准物质研制中心,使用时稀释成 2.0 mg/mL标准工作液;pH为 3.6 的醋酸-醋酸钠缓冲液,0.5 mol/L;DEABR按文献[7]的方法合成,使用时用乙醇配成1.0×10-4 mol/L溶液;甲醇:高效液相色谱专用(Fisher公司生产);水为二次蒸馏水,并用Milli-Q50超纯水仪(美国Millipore公司) 处理,电阻³ 18 MW .cm;所用试剂除作特殊说明外均为分析纯。

2.2 色谱条件

色谱柱为ZORBAX Stable Bound (4.6×50 mm, 1.8 mm) 快速分离柱;流动相为85%的甲醇 (内含0.5%的醋酸),流速为2.0 mL/min, 进样体积10 m L。在上述色谱条件下,标样和样品在540 nm处的色谱图见图1。

图1 标样和催化剂样品色谱图

Fig.1 The chromatogram of standard samples (a) and catalyst samples (b)

2.3 实验方法

取适当的标样或样品溶液于 25 mL容量瓶中。加入4 mL pH 3.6 的醋酸-醋酸钠缓冲液,5.0 mL 1×10-4 mol/L DEABR溶液,定容到25 mL, 摇匀,放置10 min,取5 mL用0.45 m m针头过滤器过滤,进样10 mL分析。

3 结果与讨论

3.1 柱前衍生条件

DEABR与铂、钯、铑在弱酸性介质中显色,最佳显色pH为:铂 1.2-4.8,钯 0.8-4.6,铑1.6- 4.2,因此实验选用pH=3.6 醋酸-醋酸钠缓冲溶液控制显色酸度,用量在4.0 mL左右可把pH控制在适宜范围。试验表明,1×10-4 mol/L DEABR用量在1.0 mL以上即可分别完全络合含量为10 m g的铂、钯、铑;由于实际样品中还有其它元素也会与DEABR络合而消耗试剂,需加入过量的试剂,因此实验选用加入5.0 mL的DEABR溶液;各元素的络合物在生成后至少可稳定4 h。

3.2 铂、钯、铑的定性及检测波长的选择

样品中铂、钯、铑均由其保留时间及二极管矩阵检测器350-600 nm波长扫描所得紫外光谱图与标样对照确认,由二极管矩阵检测器所记录光谱图可知: Pt-DEABR络合物最大吸收波长为542 nm,Pd-DEABR络合物最大吸收波长为538 nm,Rh-DEABR络合物最大吸收波长为530 nm,为了达到最佳灵敏度,各组分均在最大波长下检测定量。

3.3色谱条件

用水和甲醇为流动分离DEABR与铂、钯、铑生成的络合物,当甲醇的比例为85%时各络合物均可达到基线分离且分离时间短,因此实验选用85%的甲醇为流动相。DEABR与铂、钯、铑生成的络合物在弱酸性条件下稳定,因此实验选择在流动相中含0.5%的醋酸。

3.4干扰实验

在弱酸性条件下,除铂、钯、铑外,其它元素Au3+,Hg2+,Pb,Cu2+,Ag+也与DEABR生成络合物,因此我们做了干扰实验,对于2 mg的铂、钯、铑,50倍的Hg2+,Pb2+,Cu2+ 和10倍的 Au3+,Ag+不干扰测定,方法选择性较好。

3.5工作曲线及检出限

用峰面积定量法得工作曲线,结果见表1,根据信噪比S/N=3,算得各组分的检出限,结果见表1。表中A为峰面积,C单位为 (mg/L)。

表1 回归方程、相关系数及检出限

Table 1 Regression Equation, Coefficient and Detect limit

组分

Components

回归方程

Regression Equation

线性范围Linear Range (mg/L)

相关系数 Coefficient

检出限

Detect limit (mg/L)

Pt-DEABR

A=3.58×104 C - 367

5-1200

r=0.9991

1.2

Pd-DEABR

A=3.06×104 C - 115

4-1100

r=0.9993

1.0

Rh-DEABR

A=2.96×104 C + 431

6-900

r=0.9992

1.0

3.6样品分析结果

样品分析时每样平行测定5次,准确称取已磨细至120-200目的试样称取0.2 g (精确到0.0001 g)于聚四氟乙烯消化罐中,加3 mL的浓盐酸和1.0 mL的过氧化氢,立即盖上罐内盖,旋紧外盖,于微波消化炉中用800 W的功率消解10 min;消解完后于电热板上加热蒸发到近干,用10 mL 5 %的盐酸溶解残渣,转入25 mL的容量瓶中定容,依样品含量高低,酌情取适当体积试液于25 mL的容量瓶中,按实验方法测定,另取相同样品一份,加入0.2 mg 的Pt、0.05 mg的Pd和Rh,按上述方法消化后按实验方法测定,用加标样品测出量减去未加标样品测出量再除以标准加入量计算加标回收率,用5次平行测定的结果计算相对标准偏差,结果见表-2。用电感偶合等离子体质谱法作对照,结果见表3。

表2 本方法样品分析结果 (mg/g)

Table 2 Determination results (mg/g) of the sample with the proposed method

组分

Components

样品 Samples

RSD%

(n=5)

回收率%recovery%

CHJ0623

CHJ0625

CHJ0626

CHJ0629

Pt

1.22

0.947

1.18

1.54

1.2-1.8

96-101

Pd

0.356

0.218

0.311

0.284

1.4-1.9

98-104

Rh

0.122

0.076

0.148

0.053

1.6-2.1

94-105

表3 ICP-MS法样品分析结果 (mg/g)

Table 3 Determination results (mg/g) of the sample with ICP-MS method

组分

Components

样品 Samples

RSD%

(n=5)

加标回收率recovery%

CHJ0623

CHJ0625

CHJ0626

CHJ0629

Pt

1.16

0.952

1.22

1.51

1.7-2.2

94-102

Pd

0.377

0.222

0.317

0.291

2.0-2.5

98-108

Rh

0.125

0.074

0.151

0.051

2.1-2.7

97-109

4 结 论

本方法把若丹宁类试剂应用到高效液相色谱测定无机元素中,采用对二乙氨基苯基亚甲基若丹宁为柱前衍生试剂,快速分离柱高效液相色谱法测定铂、钯、铑,3种贵金属元素的络合物在2.0 min内可达到基线分离,分析时间比常规色谱柱(10-20 min)相比大大缩短。方法检出限达m g/L 级,具有较高的灵敏度。本方法采用微波消化样品,消解一批样品只需10 min,和常规方法相比大大缩短了样品消解时间,而且密闭的微波消化环境污染大大降低。总之本方的建立为汽车尾气催化剂中痕量铂、钯和铑的快速准确测定提供了方法。

怎样使碟片离心机分离液体中的重金属

分离机分离的对象是固液混合或者是互不相容的液体

因为分离对象是重金属,重金属离子处理成不相溶液体的可能性不大,主要就是把液体中的重金属弄成不溶盐类沉淀

根据所分离对象的化学特性,加药使所要分离的重金属形成不溶性沉淀或络合物,然后经过分离机分离出来

不过,叠式离心机一般用于分离难分离的物料(例如粘性液体与细小固体颗粒组成的悬浮液或密度相近的液体组成的乳浊液等),比较适合于发酵酿造行业,至于你要求的重金属分离,小批量能将就用,要是处理量大,最好还是用卧螺离心机,这个处理能力强,是最对口的离心机

富一阳光为你解答,希望有所帮助,望采纳

ic离子色谱仪与液相色谱仪hplc的区别

1. 离子色谱法 ion chromatography, IC 狭义地讲,是基于离子性化合物与固定相表面离子性功能基团之间的电荷相互作用实现离子性物质分离和分析的色谱方法;广义地讲,是基于被测物的可离解性(离子性)进行分离的液相色谱方法。1975年Small发明的离子色谱是以低交换容量离子交换剂作固定相、用含有合适淋洗离子的电解质溶液作流动相使无机离子得以分离,并成功地用电导检测器连续测定流出物的电导变化。但随着色谱固定相和检测技术的发展,非离子交换剂固定相和非电导检测器也广泛用于离子性物质的分离分析。根据分离机理,离子色谱可分为离子交换色谱、离子排斥色谱、离子对色谱、离子抑制色谱和金属离子配合物色谱等几种分离模式(方式)。其中离子交换色谱是应用最广泛的离子色谱方法,是离子色谱日常分析工作的主体,通常要采用专门的离子色谱仪进行分析。离子色谱法已经广泛地用于环境、食品、材料、工业、生物和医药等许多领域。

2. 抑制型离子色谱法 suppressed ion chromatography, SIC 又称双柱离子色谱法,是在柱流出物进入检测器之前通过化学抑制等方法将较高的流动相背景电导降低到一定程度后再进行电导检测的离子色谱法。例如,当以强电解质(如碳酸盐)作流动相分析无机阴离子时,流动相背景电导很高,难以直接检测到被测阴离子或检测灵敏度很低,如果将柱流出物通过一个抑制器,使流动相中被测离子的反离子(阳离子)得以除去,流动相的背景电导就会大大降低,同时被测阴离子在抑制器中转变成灵敏度更高的酸形式,从而获得很高的检测灵敏度。因为离子色谱发展初期的抑制器是与分离柱类似的柱形抑制器(抑制柱),柱内填充与分离柱填料带相反电荷的离子交换树脂,因而早期又称双柱离子色谱法。

3. 双柱离子色谱法 dual column ion chromatography 又称抑制型离子色谱法,是在分离柱之后连接抑制柱(或其他类型抑制器)的离子色谱法。参见“抑制型离子色谱法”

4. 非抑制型离子色谱法 non-suppressed ion chromatography, NSIC 又称单柱离子色谱法,是不采用抑制器抑制背景电导,而将柱流出物直接导入检测池进行电导检测的离子色谱法。当以弱电解质(如有机羧酸或其盐)作流动相时,因流动相本身的电导率较低,不使用抑制器也能获得较高的检测灵敏度。一般而言,非抑制型离子色谱法的检测灵敏度比抑制型离子色谱法低约一个数量级。

5. 单柱离子色谱法 single column ion chromatography 又称非抑制型离子色谱法,是只使用分离柱,而不在分离柱后连接抑制柱的离子色谱法。参见“非抑制型离子色谱法”

6. 离子交换色谱法 ion exchange chromatography, IEC 以离子交换剂(如聚苯乙烯基质离子交换树脂)作固定相,基于流动相中溶质(样品)离子和固定相表面离子交换基团之间的离子交换作用而达到溶质保留和分离的离子色谱法。分离机理除电场相互作用(离子交换)外,还常常包括非离子性吸附等次要保留作用。其固定相主要是聚苯乙烯和多孔硅胶作基质的离子交换剂。离子交换色谱法最适合无机离子的分离,是无机阴离子的最理想的分析方法。 7. 阴离子交换色谱法 anion exchange chromatography, AEC 以阴离子交换剂作固定相进行阴离子分离分析的离子色谱法。最常用的固定相是以季铵基为功能基团的阴离子交换剂,最常用的流动相是碳酸(氢)盐、有机羧酸盐。可以用于无机阴离子、阳离子的配阴离子、羧酸和烷基磺酸等无机和有机阴离子的分析。

8. 阳离子交换色谱法 cation exchange chromatography, CEC 以阳离子交换剂作固定相进行阳离子分离分析的离子色谱法。最常用的固定相是以磺酸基和羧酸基为功能基团的阳离子交换剂,最常用的流动相是稀的无机酸溶液和有机羧酸。可以用于金属阳离子、有机胺、生物碱等无机和有机阳离子的分析。

9. 离子排斥色谱法 ion exclusion chromatography, ICE 基于溶质和固定相之间的Donnan排斥作用的离子色谱法。在固定相与流动相的界面存在一个假想的Donnan膜,游离状态的离子因受固定相表面同种电荷的排斥作用而无法穿过Donnan膜进入固定相,在空体积(排斥体积)处最先流出色谱柱。而弱离解性物质可以部分穿过Donnan膜进入固定相,离解度越低的物质越容易进入固定相,其保留值也就越大。于是,不同离解度的物质就可以通过离子排斥色谱法得以分离。在离子排斥柱上还存在体积排阻和分配作用等次要保留机理。最常用的离子排斥色谱固定相是具有较高交换容量的全磺化交联聚苯乙烯阳离子交换树脂,这种阳离子交换树脂一般不能用于阳离子的离子交换色谱分离。离子排斥色谱对于从强酸中分离弱酸,以及弱酸的相互分离是非常有用的。如果选择适当的检测方法,离子排斥色谱还可以用于氨基酸、醛及醇的分析。因为其英文名称也可写作ion chromatography exclusion,故常以ICE作为其简写形式,以与离子交换色谱法的简写形式(IEC)相区别。

10. 离子对色谱法 ion pair chromatography, IPC 又称离子相互作用色谱法或流动相离子色谱法,是基于溶质(样品)离子与流动相中的离子对试剂形成电中性的离子对化合物之后,通过吸附与分配等相互作用在固定相中保留和分离的一种色谱方法。固定相是普通高效液相色谱中最常用的极性或非极性键合相。离子对色谱采用的是普通高效液相色谱的分离体系。离子对色谱在生物医药样品中离子性有机物的分析、工业样品中离子性表面活性剂以及环境与农业样品中过渡金属离子配合物的分析方面非常有用。

11. 离子相互作用色谱法 ion interaction chromatography, IIC 又称离子对色谱法或流动相离子色谱法。参见“离子对色谱法”

12. 离子抑制色谱法 ion suppression chromatography, ISC 通过控制流动相pH值,使弱酸性或弱碱性溶质的离解得到抑制,以未离解的分子状态在固定相上分配或吸附,从而达到保留与分离的液相色谱方法。其分离机理和离子对色谱法相似,也是将溶质离子转变成中性的、具有一定疏水性的分子状态。离子抑制色谱主要用于有机弱酸弱碱的分析。离子抑制色谱也采用通常的高效液相色谱分离体系。因为它的分析对象是具有一定离子性的有机弱酸弱碱,所以有时在离子色谱法中也提及该方法。

13. 液态离子交换剂 liquid ion exchanger 具有离子交换功能基团,可以用于离子交换分离的液体有机化合物(如高分子胺)。它们大多是离子对试剂,将它们溶于流动相后动态涂渍到多孔硅胶或非极性键合相上,形成动态包覆离子交换层,可进行动态离子交换色谱分离。

14. 金属配合物离子色谱法 metal complex ion chromatography, MCIC 又称金属络合物色谱法,是使被测金属离子与适当的有机配位体作用,形成金属配合物(中性分子、配阴离子或配阳离子)后,采用通常的高效液相色谱体系分离和检测的一种色谱方法。因为它的分析对象是金属离子,所以也可以作为一种离子色谱法讨论。

15. 离子色谱仪 ion chromatograph 离子色谱分析所使用的专门仪器。它和一般的液相色谱仪的基本构造和工作原理一样,最基本的单元组件也是高压输液泵、进样器、色谱柱、检测器和数据处理系统(记录仪、积分仪或色谱工作站)。此外,还可根据需要配置流动相在线脱气装置、梯度洗脱装置、自动进样系统、流动相抑制系统、柱后反应系统和全自动控制系统等。专用离子色谱仪不同于普通液相色谱仪的主要之处是使用的常规检测器不是紫外检测器,而是电导检测器,所用的分离柱不是液相色谱所用的吸附型或分配型柱,而是以离子交换剂作填料的分离柱,而且柱容量比通常的高效液相色谱柱小得多。另外,在离子色谱中,特别是在抑制型离子色谱中往往用强酸性或强碱性物质作流动相,因此,仪器的流路系统耐酸耐碱的要求更高一些。

16. 淋洗剂 eluent 在离子色谱分析所用流动相溶液中,能提供与溶质离子在离子交换位置进行离子交换竞争反应的淋洗离子的物质。如阴离子交换色谱分析中常用NaHCO3水溶液作流动相,NaHCO3就是淋洗剂。参见“淋洗离子”。

17. 淋洗离子 eluent ion 在离子色谱流动相中,与溶质离子在离子交换位置相互竞争,将溶质离子从固定相洗脱出来的那种离子。如NaHCO3作为阴离子交换色谱分析的淋洗剂时,它所提供的阴离子HCO3-就是淋洗离子。

18. 去离子水 deionized water 用离子交换分离等技术去除了离子性物质的纯水。离子色谱中配制流动相和样品都要用去离子水,以避免水中所含离子性成分被干扰.

建议您可以到行业内专业的网站进行交流学习!

分析测试百科网,分析行业的百度知道,基本上问题都能得到解答,有问题可去那提问,百度上搜下就有。

如何将EDTA金属络合物是水溶性的,那如何从水中分离,并且回收重金属离子?

不懂化学,只能给个参考。。。

EDTA用途很广,可用作彩色感光材料冲洗加工的漂白定影液,染色助剂,纤维处理助剂,化妆品添加剂,血液抗凝剂,洗涤剂,稳定剂,合成橡胶聚合引发剂,EDTA是螯合剂的代表性物质。能和碱金属、稀土元素和过渡金属等形成稳定的水溶性络合物.


原文链接:http://527256.com/18426.html

相关文章

访客
访客
发布于 2022-07-13 19:58:31  回复
hy 又称非抑制型离子色谱法,是只使用分离柱,而不在分离柱后连接抑制柱的离子色谱法。参见“非抑制型离子色谱法” 6. 离子交换色谱法 ion exchange c

发表评论:

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

返回顶部